Linear Programming in Practice

- **Essential Issue:** To model non-linear reality with linear equations
 - Activities
 - Piece-wise linear approximations
 - Fixed charges

- **An issue that may come up:** Duality

- **Some Example applications**
Motivation:

If we use a standard production function

\[f(X) = \sum c_i X_i = Z \]

resources \(\Rightarrow \) output

We are not able to represent typical production function with diminishing marginal returns and non-linear isoquants

Concept

An activity is a specific way to use resources in fixed proportions

Physical interpretation is direct, e.g.:

- an aircraft using pilots, fuel / ton-km
- a machine requiring labor, materials per unit product

Think of activities as intermediates between resources and output

resources \(\Rightarrow \) activities \(\Rightarrow \) output
Example for 1 Activity

transport process A_1 uses 40 persons, 200 gallons to produce 100 Ton-km

Two Activities

$A_1 = (40p, 200g) \implies 100 \text{ T-m}$

$A_2 = (10p, 200g) \implies 50 \text{ T-m}$

$A_1 = \frac{1}{2} \quad (20, 100) \implies 50$

$A_2 = 1 \quad (10, 200) \implies 50$

$[A_1, A_2] = \left[\frac{1}{2}, 1 \right]$

$\quad (30, 300) \implies 100$

Note: Isoquant horizontal and vertical above, below activities -- Why?
Many Activities

LP Formulation with Activities (1)

- Example: Maximize Profits from Production of Alloys,
 - 3 possible processes
 - limited by resources on hand (Crome and Carbon)
 - Different profitability for each process

- Optimize: Profit = \sum c_i P_i -- subject to constraints

<table>
<thead>
<tr>
<th>Element</th>
<th>Process 1</th>
<th>Process 2</th>
<th>Process 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cr</td>
<td>6</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>C</td>
<td>4</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>Profit</td>
<td>30</td>
<td>28</td>
<td>29</td>
</tr>
</tbody>
</table>
LP Formulation with Activities (2)

\[\text{max } Z = 30P_1 + 28P_2 + 29P_3 \]

\[\text{s.t. } \begin{align*}
6P_1 + 5P_2 + 3P_3 & \leq 26 \quad \text{(Cr)} \\
4P_1 + 2P_2 + 6P_3 & \leq 7 \quad \text{(C)}
\end{align*} \]

Piece-Wise Linear Approximations (1)

- **Motivation:**
 - Returns to scale generally non-linear
 - Straight line approximations are inaccurate
Piece-Wise Linear Approximations (2)

- Concept:
 - Represent \(f(X_1) \) with several lines

\[
\begin{align*}
&c_1 X_1 \\
&c_{1A} X_1 \\
&c_{1B} X_1 \\
&c_{1C} X_1
\end{align*}
\]

Piece-Wise Linear Approximations (3)

Implementation Notes:

- \(X_1 \) must be redefined as several variables: \(X_{1A}, X_{1B}, \ldots \)
- These new variables must not overlap, so \(X_{1A} < X_{1B}, \) etc.
- New variables and constraints make the LP larger and, thus more expensive
Piece-wise Linear Approximations (4)

- **Given:** Max $Z = f(X_1) + 4X_2$
 s.t. $3X_1 + 6X_2 \leq 8$

- **Piece-wise linear approximation gives:**
 - $X_1 \Rightarrow X_{1A} + X_{1B}$
 - X_{1A}, X_{1B} have same a_{ij} as X_1
 - $c_1 = c_{1A}, c_2A$
 - $X_{1A} < \text{cutoff X value between } X_{1A} \text{ and } X_{1B}, X'$

- **Thus:** Max $Z = c_{1A} X_{1A} + c_{1B} X_{1B} + 4X_2$
 s.t. $3X_{1A} + 3X_{1B} + 6X_2 \leq 8$
 $X_{1A} \leq X'$

Piece-wise Linear Approximations (5)

- **Key Limitation:**
 - ONLY works for convex feasible region!

- **Why?**
 - What if $c_{1B} > c_{1A}$? (see fig)

- **Max** $Z = c_{1A} X_{1A} + c_{1B} X_{1B} + 4X_2$

- **The LP will select** X_{1B} before X_{1A}

Result may be meaningless!

Engineering Systems Analysis for Design
Richard de Neufville, Joel Clark, Frank R. Field
Massachusetts Institute of Technology
LP in Practice
Slide 13 of 25
Convex Feasible Regions Review:

Piecewise linear approximation works when FR is convex

- Convex Feasible Region
- Non-Convex Feasible Region

Fixed Charges

- Example: Warehousing
 - Cost = fixed rent, etc. + variable
 - Unless you choose not to operate it!

 \[
 f(X_1) = c_0 + c_1 X_1 \quad X_1 \geq 0
 \]
 \[
 f(X_1) = 0 \quad X_1 = 0
 \]

 \[
 \text{LP generally cannot handle fixed charges}
 \]

 Exception:
 - All \(X_i > 0; \ X_i \neq 0 \)
 - then subtract \(\Sigma c_0 \)
 - and optimize
Duality

- Concept:
 - A “dual” is a mirror-image form to another problem (the “primal”)
 - If primal = max; then dual = min
 - If primal = min; then dual = max
 - Dual contains all information of the primal, but in a different format
 - Optimum value of primal = optimum value of dual

- Example:
 - Primal: maximize output subject to budget limitations
 - Dual: minimize costs subject to output requirements

LP Duality

- Mathematics:
 - Given a Primal:
 - Optimize: \(Z = c^T X \)
 - subject to: \(A X \leq \geq B \)
 - Dual is:
 - Optimize: \(Y = B^T W \)
 - subject to: \(A^T W \leq \geq c^T \)

- Change of dimensionality between primal & dual:
 - \(c^T \) and \(B \) have different number of variables

- Can use duality to:
 - Reduce size of constraint matrix
 - Speed up LP solution
LP Duality - Example (1)

Primal: Max: \(Z = X_1 + 2X_2 + 3X_3 \)
\[\text{s.t.} \quad \begin{align*}
4X_1 + 2X_2 & \leq 5 \\
6X_1 + 7X_2 + 9X_3 & \leq 12
\end{align*} \]

\[A = \begin{bmatrix} 4 & 2 & 0 \\ 6 & 7 & 9 \end{bmatrix}, \quad A^T = \begin{bmatrix} 4 & 6 \\ 2 & 7 \\ 0 & 9 \end{bmatrix}, \quad B = \begin{bmatrix} 5 \\ 12 \end{bmatrix} \]

\[C = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \quad C^T = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \]

So: Max: \(Z = CX \)
\[\text{s.t.} \quad AX \leq B \]

LP Duality - Example (2)

Primal: Max: \(Z = X_1 + 2X_2 + 3X_3 \)
\[\text{s.t.} \quad \begin{align*}
4X_1 + 2X_2 & \leq 5 \\
6X_1 + 7X_2 + 9X_3 & \leq 12
\end{align*} \]

Dual: Min: \(Y = 5W_1 + 12W_2 \)
\[\text{s.t.} \quad \begin{align*}
4W_1 + 6W_2 & \geq 1 \\
2W_1 + 7W_2 & \geq 2 \\
9W_2 & \geq 3
\end{align*} \]

So: Max: \(Z = CX \)
\[\text{s.t.} \quad AX \leq B \]
Min: \(Y = B^T W \)
\[\text{s.t.} \quad A^T \leq C^T \]
LP Duality - Interpretation of Results

--Primal:
Max: \(Z = 3X_1 + X_2 + 8X_3 \)
\[\text{s.t. } \begin{align*}
X_1 + X_2 + X_3 &\leq 4 \\
X_1 + X_2 + X_3 &\leq 7 \\
2X_2 + X_3 &\leq 8
\end{align*} \]
\[X^* = \{0,2,4\} \]
\[\text{SP}^* = \{7.5,0,0.5\} \]
\[\text{OC}^* = \{4.5,0,0\} \]
\[\text{SV}^* = \{0,1,0\} \]
\[Z^* = 34 \]

--Dual:
Min: \(Y = 4W_1 + 7W_2 + 8W_3 \)
\[\text{s.t. } \begin{align*}
W_1 + W_2 &\geq 3 \\
W_2 + 2W_3 &\geq 1 \\
W_1 + W_2 + W_3 &\geq 8
\end{align*} \]
\[W^* = \{7.5,0,0.5\} \]
\[\text{dSV}^* = \{4.5,0,0\} \]
\[\text{dSP}^* = \{0,2,4\} \]
\[\text{dOC}^* = \{0,1,0\} \]
\[Y^* = 34 \]

Primal-Dual Relationships in Solution

<table>
<thead>
<tr>
<th>Primal</th>
<th>Dual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decision Variables</td>
<td>Shadow Prices</td>
</tr>
<tr>
<td>Shadow Prices</td>
<td>Decision Variables</td>
</tr>
<tr>
<td>Opportunity Costs</td>
<td>Slack Variables</td>
</tr>
<tr>
<td>Slack Variables</td>
<td>Opportunity Costs</td>
</tr>
</tbody>
</table>
Some Real-World Applications (1)

- **Airline Scheduling**
 - **Objective:** Minimize Cost
 - **Constraints:**
 - Number of Aircraft
 - Available time on Aircraft before Maintenance
 - Crews Available
 - Limits on Crew time on duty
 - Location of crews and aircraft
 - Traffic between points, etc, etc

Some Real-World Applications (2)

- **Production and Logistics**
 - **Objective:** Minimize Cost / Maximize Throughput
 - **Constraints:**
 - Number and Capacity of Facilities
 - Connectivity of Network
 - Personnel restrictions
 - Location of crews and aircraft
 - Times orders are made
 - Delays in system, etc, etc,

Summary on Applications

• Special Formulations required so that LP can represent realistic problems
 • Activity representations
 • Piece-wise linear approximations
 • Integers (not discussed here)
• Much sophistication in mathematics possible
 • Duality gives a flavor
 • See Example applications
• However, LP basically deals with system models with known parameters, without risk

MORE WILL BE REQUIRED!!!