Linear Programming
Sensitivity Analysis

Sensitivity Analysis

- Rationale
- Shadow Prices
 - Definition
 - Use
 - Sign
 - Range of Validity
- Opportunity Costs
 - Definition
 - Use
Rationale for Sensitivity Analysis

- Math problem is an approximation
 - optimum is an approximation
 - we need to check

- Constraints often artificial
 - Designer should question them
 - Should we have different specifications?

- Situations always probabilistic
 - Prices change
 - Need to assess risk

Shadow Price Definition

- Recall from Constrained Optimization:
 - Shadow price = $\frac{\delta (\text{objective function})}{\delta (\text{constraint})}$ at the optimum

- Complementary Slackness:
 Either (Slack variable) or (shadow price) = 0
Shadow Price Illustration

Max: \(Y = X_1 + 4X_2 \)

s.t.
\[
\begin{align*}
X_1 + X_2 & \leq 5 = b_1 \\
X_1 & \geq 3 = b_2 \\
X_2 & \leq 3 = b_3 \\
X_1, X_2 & > 0
\end{align*}
\]

Notes:
\begin{enumerate}
\item \(X_1^* = 3; X_2^* = 2; Y^* = 11 \)
\item when \(\Delta b_1 = \pm 1 \)
\(\Delta X_2^* = \pm 1; \Delta Y^* = \pm 4; SP_1 = 4 \)
\item SP_3^* = 0; slack_3 = 1
\item when \(b_1 > 6 \)
\(\text{slack}_3 = 0; SP_3 \neq 0; SP_1 = 1 \leq 4 \)
\end{enumerate}

Proactive Use of Shadow Prices

- Identify constraints with high S.P

- See if they can be changed for better solutions

- Example: New York water supply
 - Original Design for Third City Tunnel ($1 billion plus)
 - pressure < 40 psi at curb (some point in Brooklyn)
 - No allowance for local tanks, pumps
 - Shadow price in millions of dollars!
Reactive Use of Shadow Prices

- Respond to new opportunities
- Example: client changes specifications

- Respond to proposals for new constraints
- Example: trace chemicals

Sign of Shadow Prices

- "Obvious Rule" (+SP with +Δb) not correct

- Correct Reasoning:
 - What makes the optimum better?
 - Expansion of feasible region => "Relaxation of constraints"
 - What changes will increase the feasible region?
 - Increase upper bound: \(\sum_j a_{ij}X_j < b_i \)
 - Decrease lower bound: \(\sum_k a_{kj}X_j > b_k \)

 - i.e., "Raise the roof, lower the floor."
Shadow Price Illustration

Max: \(Y = X_1 + 4X_2 \)

s.t. \(X_1 + X_2 \leq 5 = b_1 \)
\(X_1 \geq 3 = b_2 \)
\(X_2 \leq 3 = b_3 \)
\(X_1, X_2 \geq 0 \)

Notes:

a) \(X_1^* = 3; X_2^* = 2; Y^* = 11 \)

b) when \(\Delta b_1 = \pm 1 \)
\(\Delta x_1^* = \pm 1; \Delta y^* = \pm 4; \) \(SP_1 = 4 \)

c) \(SP_3^* = 0; \) slack_3 = 1

d) when \(b_1 > 6 \)
\(\) slack_3 = 0; \(SP_3 \neq 0; \) \(SP_1 = 1 \leq 4 \)

Shadow Prices As Constraints Change

increase an upper bound ("raise the roof")

decrease a lower bound ("lower the floor")

When \(b_2: 3 \rightarrow 2 \)
new \(X^* = [2,3] \)
new \(Y^* = 14 \)
\(\Delta Y^* = 3 \)
Range of Shadow Prices

- In Linear Programming, Shadow prices are constant.
- Until a constraint changes enough so that a new constraint is binding.
- Results given as:

 \[SP_K = \text{constant} \]

 for \(r_L < b_K < r_U \)

- Outside the range:
 - Shadow prices decrease as constraint is relaxed.
 - Shadow prices increase as constraint is tightened.

Shadow Price Ranges for Example

Max: \(Y = X_1 + 4X_2 \)

s.t. \(X_1 + X_2 \leq 5 = b_1 \)
 \(X_1 \geq 3 = b_2 \)
 \(X_2 \leq 3 = b_3 \)
 \(X_1, X_2 \geq 0 \)

Shadow Prices

\(SP_1 = 4 \quad 3 \leq b_1 \leq 6 \)
\(SP_2 = 4 \quad 2 \leq b_2 \leq 5 \)
\(SP_3 = 0 \quad 2 \leq b_3 \)
Opportunity Cost - Definition

- Objective Function $= \sum c_i X_i$
- Opportunity costs associated with c_i -- the coefficients of design/decision variables
- At optimum, some decision variables $= 0$
 - These are non-optimal decision variables
- Opportunity cost is:
 - Degradation of optimum per unit of non-optimal variable introduced into design
 - A "cost" in that it is a *worsening* of optimum. Units may be almost anything; equal to whatever units are being optimized.

Meaning of Opportunity Costs

- Opportunity cost defines design trigger "price"
 - The value of the coefficient of the decision variable for which that variable should be in the design
- Suppose: Obj.Function $= \ldots + c_K X_K + \ldots$
 and X_K not optimal with an opportunity cost $= OC_K$
- Then, as c_K changes for the better, (greater for maximization, lesser for minimization)
 - OC_K lower
 - $OC_K = 0$ at $c'_K = c_K - OC_K$
- c'_K is trigger price; defines the limit of best design
Illustration of Opportunity Cost

- What happens when forced to use a non-optimal decision variable?
- Example: Min Cost = 2X₁ + 10X₂ + 20X₃
 \[\begin{align*}
 \text{s.t.} & \quad X₁ + X₂ + X₃ \geq 3 \\
 & \quad X₂ \geq 1 \\
 & \quad X₁, X₂, X₃ \geq 0
 \end{align*}\]
 - \(X^* = (2, 1, 0);\) cost* = 14
 - If forced to use \(X₃\), new \(X^* = (1, 1, 1);\) new cost* = 32

 Thus: (opportunity cost)₃ = \(\Delta Z^*/1 = 18\)

Use of Opportunity Cost

- At what price would it be desirable to use \(X₃\) ?
 - If \(X₃\) is used with no change in its unit cost (= \(c₃\)), the optimal cost would increase by 18
 - If the cost of \(X₃\) were to fall by an amount equal to the opportunity cost (\(c₃' = c₃ - OC₃ = 20 - 18 = 2\)). It would then compete with \(X₁\)
 - So the answer is: When its unit cost falls by its opportunity cost: 20 - 18 = 2
How do you find SP and OC?

- LP optimization programs all calculate shadow prices and opportunity costs routinely and “print them out” for you

- Sometimes, programs report this information in special ways. Thus:
 - Shadow Prices \(\leq \) "dual decision variables"
 - Opportunity Costs \(\leq \) "dual slack variables"
 - More on this later

A Possible Semantic Confusion

- Note that the Phrases “shadow price” and “opportunity cost” have somewhat different meanings in LP and Economics literature

- The “opportunity cost” of an action in economics can be interpreted as the “shadow price” of that action on the budget...
Summary on LP Sensitivity Analysis

• LP Optimization Programs automatically provide important information useful for improving/changing design
• Shadow prices -- to help redefine constraints
• Opportunity costs -- to identify critical prices

• Need to understand these quantities carefully