Economic Evaluation

- Objective of Analysis
- Criteria
 - Nature
 - Peculiarities
- Comparison of Criteria
- Recommended Approach

Objectives of Economic Evaluation Analysis

- Is individual project worthwhile? Above minimum standards?
 - This is a “choice”, is it better or not?
 - This is easier
- Is it best? Is it at top of ranking list?
 - This is a “judgment” about details
 - This is more difficult
Principal Evaluation Criteria

- Net Present Value
- Benefit - Cost Ratio
- Internal Rate of Return
- Cost-Effectiveness Ratio
- Pay-Back Period

Net Present Value

- \(NPV = B - C \) (stated in present values)
- Objective: To Maximize
- Advantage: Focus on Result
- Disadvantage
 - Interpretation of NPV
 - No account for scale, thus difficult to use for ranking
Evaluation of Projects S and T

<table>
<thead>
<tr>
<th>Project</th>
<th>Benefit $</th>
<th>Cost $</th>
<th>Net Value $</th>
<th>NPV as % of Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>2,002,000</td>
<td>2,000,000</td>
<td>2,000</td>
<td>0.1</td>
</tr>
<tr>
<td>T</td>
<td>2,000</td>
<td>1,000</td>
<td>1,000</td>
<td>100</td>
</tr>
</tbody>
</table>

Benefit - Cost

- Ratio = \(\Sigma B / \Sigma C \) (Present Values)
- Objective:
 - To Maximize
- Advantage:
 - Common Scale, Useful in Ranking
- Disadvantages:
 - Treatment of Recurring Costs
 \(\Sigma B / \Sigma C \) or Net Benefits/Investment
 = > Bias against operating projects
 - Ranking sensitive to \(r \)
 low \(r \) = > higher rank for long-term projects
A Comparison of a Capital Intensive and Operations Project (Benefits in Present Values)

<table>
<thead>
<tr>
<th>Project</th>
<th>K</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investment, Q<sub>k</sub></td>
<td>$1,000,000</td>
<td>$1,000,000</td>
</tr>
<tr>
<td>Annual Cost, G</td>
<td>$50,000</td>
<td>$500,000</td>
</tr>
<tr>
<td>Annual Benefits</td>
<td>$200,000</td>
<td>$700,000</td>
</tr>
<tr>
<td>Annual Return</td>
<td>$150,000</td>
<td>$200,000</td>
</tr>
<tr>
<td>Useful Life</td>
<td>10 Years</td>
<td>10 Years</td>
</tr>
<tr>
<td>Total Benefits</td>
<td>$2,000,000</td>
<td>$7,000,000</td>
</tr>
<tr>
<td>Total Cost, Q<sub>k</sub> + C<sub>r</sub></td>
<td>$1,500,000</td>
<td>$6,000,000</td>
</tr>
<tr>
<td>Benefit/Cost Ratio</td>
<td>1.34 better than</td>
<td>1.17</td>
</tr>
<tr>
<td>Annual Return</td>
<td>15% worse than</td>
<td>20%</td>
</tr>
<tr>
<td>Net Value Present</td>
<td>$500,000 worse than</td>
<td>$1,000,000</td>
</tr>
</tbody>
</table>

The Ranking of Projects by Benefit-Cost Criterion Can Depend on DR

<table>
<thead>
<tr>
<th>Project</th>
<th>Investment C<sub>k</sub>, $</th>
<th>Annual Benefits R, $</th>
<th>Project Life N Years</th>
<th>Benefit - cost at discount rate of 3%</th>
<th>Benefit - cost at discount rate of 10%</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1000</td>
<td>200</td>
<td>10</td>
<td>1.73</td>
<td>1.23</td>
</tr>
<tr>
<td>B</td>
<td>1000</td>
<td>125</td>
<td>20</td>
<td>1.86 (best)</td>
<td>1.05 (best)</td>
</tr>
</tbody>
</table>

Dynamic Strategic Planning Richard de Neufville, Joel Clark, and Frank R. Field
Massachusetts Institute of Technology Economic Evaluation Slide 7 of 17
Internal Rate of Return

- IRR = r such that NPB = 0
- Objective:
 - Maximize IRR
- Advantages:
 - No need to choose r
 - Manipulation by r impossible
- Disadvantages:
 - Calculations complex -- but easy in spreadsheet
 - Ambiguous
- Note: ranking by IRR and B/C ratio may differ

Graphical Determination of IRR
(Data from example in Session 4)
Spreadsheet Determination of IRR
(Data from Example in Session 4)

<table>
<thead>
<tr>
<th>Year</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investment</td>
<td>15</td>
<td>3</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Net Income</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Cash Flow</td>
<td>-15</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>-2</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>IRR</td>
<td>13.33%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Formula: IRR(b9:k9)

Projects can Lead to Ambiguous Solutions for the Internal Rate of Return

<table>
<thead>
<tr>
<th>Project</th>
<th>Investment, $</th>
<th>Annual Benefits, $</th>
<th>Project Life, Years</th>
<th>Closure cost at Year N-1, $</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>C_k</td>
<td>R</td>
<td>N</td>
<td>C_C > RN - C_k</td>
</tr>
<tr>
<td>Q</td>
<td>200</td>
<td>100</td>
<td>5</td>
<td>310</td>
</tr>
</tbody>
</table>

Cash flow

NPV

Dynamic Strategic Planning
Richard de Neufville, Joel Clark, and Frank R. Field
Massachusetts Institute of Technology
Economic Evaluation
Slide 11 of 17
Ranking of Projects by Internal Rate of Return and Benefit-Cost Ratio Can Differ

<table>
<thead>
<tr>
<th>Project</th>
<th>Investment, C, $</th>
<th>Annual Benefits, R, $</th>
<th>Project Life, N Years</th>
<th>Benefit - Internal Rate of Return, 0%</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1000</td>
<td>200</td>
<td>10</td>
<td>1.71</td>
</tr>
<tr>
<td>B</td>
<td>1000</td>
<td>125</td>
<td>20</td>
<td>1.86</td>
</tr>
</tbody>
</table>

Pay-Back Period

- **PBP = Cost/Annual Benefits**
 - Note: undiscounted
- **Objective:**
 - To minimize
- **Advantages:**
 - Really simple
 - No choice of \(r \)
- **Disadvantages**
 - Difficult to rank correctly projects with different useful lives or uneven cash flows
Evaluation of Projects V and W

<table>
<thead>
<tr>
<th>Project</th>
<th>Investment, Cs, $</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>Payback Period Years</th>
<th>NPV at 10%</th>
<th>IRR</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>2000</td>
<td>1000</td>
<td>1000</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td>487</td>
<td>23.4%</td>
</tr>
<tr>
<td>W</td>
<td>2000</td>
<td>800</td>
<td>800</td>
<td>800</td>
<td>800</td>
<td>800</td>
<td>2.5</td>
<td></td>
<td>1484</td>
<td>32.7%</td>
</tr>
</tbody>
</table>

Cost- Effectiveness Ratio

- **Ratio = (Units of Benefit) / Cost**
 - example: “lives saved/million dollars”
- **Objective: To Maximize**
- **Advantage: Avoids problem of trying to assign $ values to “intangibles” such as a “life”, “ton of pollution”, etc.**
- **Disadvantage: No sense for minimum standard or limits**
Recommended Procedure (if you have discretion to choose)

- Examine Nature of projects
 - Easy to put into $ terms? Steady cash flows? or with closure costs? Or various project lifetimes?
 - An operating or a straight capital investment?

- Choose Method Accordingly

- No method is perfect -- ultimately a judgment

- Current “best practice” uses several criteria; uses judgment to decide on project
A Note for Exercise 1:
Average Costs of Production vary

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Cost</td>
<td>5.2</td>
<td>5.4</td>
<td>5.6</td>
<td>5.8</td>
<td>6.0</td>
<td>6.2</td>
<td>6.4</td>
<td>6.6</td>
<td>6.8</td>
<td>7.0</td>
</tr>
<tr>
<td>Average Cost</td>
<td>5.2</td>
<td>2.7</td>
<td>1.867</td>
<td>1.45</td>
<td>1.2</td>
<td>1.03</td>
<td>0.914</td>
<td>0.825</td>
<td>0.756</td>
<td>0.7</td>
</tr>
</tbody>
</table>

- Capital cost = 5
- Labor and Materials = 0.2/part
- Maximum Capacity = 10

Dynamic Strategic Planning
Massachusetts Institute of Technology

Richard de Neufville, Joel Clark, and Frank R. Field
Economic Evaluation
Slide 19 of 17