Constrained Optimization

- Unconstrained Optimization (Review)
- Constrained Optimization
 - Approach
 - Equality constraints
 - Lagrangeans
 - Shadow prices
 - Inequality constraints
 - Kuhn-Tucker conditions
 - Complementary slackness

Unconstrained Optimization (1)

- Definitions:
 - Optimization = Maximum of desired quantity
 = Minimum of undesired quantity
 - Objective Function = Expression to be optimized
 = \(Z(\mathbf{X}) \)
 - Decision Variables = Variables about which we can make decisions
 = \(\mathbf{X} = (X_1, \ldots, X_n) \)
Unconstrained Optimization (2)

- By calculus:

If \(F(X) \) continuous, analytic:
Condition for maxima and minima
\[\frac{\partial F(X)}{\partial X_i} = 0 \quad \forall_i \]

Unconstrained Optimization (3)

- Secondary conditions:

\[\frac{\partial^2 F(X)}{\partial X_i^2} < 0 \quad \Rightarrow \text{Max} \quad (B,D) \]
\[\frac{\partial^2 F(X)}{\partial X_i^2} > 0 \quad \Rightarrow \text{Min} \quad (A,C,E) \]

These define whether point of no change in \(Z \) is a maximum or a minimum
Unconstrained Optimization (4)

- Example: Housing insulation
 \(F(x) = \frac{K_1}{x} + K_2x \)
 Total Cost = Fuel cost + Insulation cost
 \(x = \) Thickness of insulation

 \[
 \frac{\partial F(x)}{\partial x} = 0 = -\frac{K_1}{x^2} + K_2
 \]

 \[x^* = \left\{ \frac{K_1}{K_2} \right\}^{1/2} \]
 (starred quantities are optimal)

Unconstrained Optimization (5)

- \(K_1 = 500 \quad K_2 = 24 \quad X^* = 4.56 \)
Constrained Optimization

- "Constrained Optimization" involves the optimization of a process subject to constraints.
- Constraints have two basic types:
 - Equality Constraints -- some factors have to equal constraints.
 - Inequality Constraints -- some factors have to be less than or greater than the constraints (these are "upper" and "lower" bounds).

Equality Constraints

- Example: Best use of budget
- Maximize: Output $= Z(X) = a_0 x_1^{a_1} x_2^{a_2}$
- Subject to (s.t.):

 $$\text{Total costs} = \text{Budget} = p_1 x_1 + p_2 x_2$$

Note: $\frac{\partial Z(X)}{\partial X} \neq 0$ at optimum
Constrained Optimization

- Approach
 To solve situations of increasing complexity, (for example, those with equality, inequality constraints) ...

 Transform more difficult situation into one we know how to deal with

- In this case, transform optimization of a “constrained” situation to optimization of “unconstrained” situation

Lagrangean Method (1)

- Transforms equality constraints into unconstrained problem

- Start with:
 \[
 \begin{align*}
 \text{Opt: } & F(x) \\
 \text{s.t.: } & g_i(x) = b_j \Rightarrow g_i(x) - b_j = 0
 \end{align*}
 \]

- Get to:
 \[
 L = F(x) - \sum \lambda_j [g_j(x) - b_j]
 \]

 \(\lambda_j\) = Lagrangean multipliers (lambdas) -- these are unknown quantities for which we must solve

 Note: \([g_j(x) - b_j] = 0\) by definition, thus
 optimum for \(F(x) = \text{optimum for } L\)
Lagrangean Method (2)

To optimize L:

\[
\frac{\partial}{\partial x_i} L = 0 \quad \forall_i \\
\frac{\partial}{\partial \lambda_j} L = 0 \quad \forall_i
\]

Example:

Opt: $F(x) = 6x_1x_2$

s.t.: $g(x) = 3x_1 + 4x_2 = 18$

$L = 6x_1x_2 - \lambda(3x_1 + 4x_2 - 18)$

\[
\begin{align*}
\frac{\partial L}{\partial x_1} &= 6x_2 - 3\lambda = 0 \\
\frac{\partial L}{\partial x_2} &= 6x_1 - 4\lambda = 0 \\
\frac{\partial L}{\partial \lambda} &= 3x_1 + 4x_2 - 18 = 0
\end{align*}
\]

Solving as unconstrained problem:

\[
\begin{align*}
\lambda &= 2x_2 = 1.5x_1 \\
x_2 &= 0.75x_1 \\
3x_1 + 3x_1 - 18 &= 0
\end{align*}
\]

\[
\begin{align*}
x_1^* &= 18/3 = 6 \\
x_2^* &= 18/8 = 2.25 \\
\lambda^* &= 4.5 \\
F(x)^* &= 40.5
\end{align*}
\]
Shadow Prices

- Shadow Price is the Rate of change of objective function per unit change of constraint
 \[\frac{\partial F(x)}{\partial b_j} \]
- This is meaning of Lagrangean multiplier
 \[SP_j = \frac{\partial F(x)^*}{\partial b_j} = \lambda_j \]
 Naturally, this is an instantaneous rate
- The shadow price is extremely important for system design
- It defines value of changing constraints

Shadow Prices (2)

- Let’s see how this works in example, by changing constraint by 0.1 units:
 Opt: \[F(x) = 6x_1x_2 \]
 s.t.: \[g(x) = 3x_1 + 4x_2 = 18.1 \]
- The optimum values of the variables are
 \[x_1^* = (18.1)/6 \quad x_2^* = (18.1)/8 \]
- Thus \[F(x)^* = 6(18.1/6)(18.1/8) = 40.95 \]
 \[\Delta F(x) = 40.95 - 40.5 = 0.45 = \lambda^* (0.1) \]
Inequality Constraints

- Example: Housing insulation
 Min: Costs = $K_1 / x + K_2 x$
 s.t.: $x \geq 8$ (minimum thickness)

![Optimizing Cost Example]

Inequality Constraints (2)

- Approach: Transform inequalities into equalities, then proceed as before

- Again, introduce new variable -- the “Slack” variable that defines “slack” or distance between constraint and amount used

- The resulting equations are known as the “Kuhn-Tucker conditions”
Inequality Constraints -- insertion of slack variables in Lagrangean

- A “slack variable”, s_j, for each inequality

 $g_j(x) \leq b_j \Rightarrow g_j(x) + s_j^2 = b_j$
 $g_j(x) \geq b_j \Rightarrow g_j(x) - s_j^2 = b_j$

- These are “squared” to be positive

- start from:

 opt: $F(x)$ s.t.: $g_j(x) \leq b_j$

- get to:

 $L = F(x) - \sum \lambda_j [g_j(x) + s_j^2 - b_j]$

Inequality Constraints -- Complementary Slackness Conditions

- The optimality conditions are:

 $\frac{\partial L}{\partial x_i} = 0$
 $\frac{\partial L}{\partial \lambda_j} = 0$
 plus: $\frac{\partial L}{\partial s_j} = 2s_j \lambda_j = 0$

- These new equations imply:

 $s_j = 0 \quad \lambda_j \neq 0$
 or
 $s_j \neq 0 \quad \lambda_j = 0$

 They are the “complementary slackness” conditions. Either slack or lambda =0 ∀i
Interpretation of Complementary Slackness Conditions

- Interpretation:
 - If there is slack on b_j, (i.e. more than enough of it)
 => No value to objective function to having more: $\lambda_j = \frac{\partial F(x)}{\partial b_j} = 0$

- If $\lambda_j \neq 0$, then all available b_j used
 => $s_j = 0$

Application to Example

- Min: Costs = $K_1 / x + K_2 x$
 s.t.: $x \geq 8$ (minimum thickness)

$L = K_1 / x + K_2 x - \lambda[x - s^2 - b]$
$L = 500 / x + 24x - \lambda[x - s^2 - 8]$
$500 / x^2 + 24 - \lambda = 0 \quad 2 \lambda s = 0 \quad x - s^2 = 8$
- If $s = 0$, $x = 8$, $\lambda = 31.8$ (at that point)
 Max = 254.5
- Therefore, worth relaxing (in this case, lowering) constraint to get maximum
- $x^* = 4.56 \quad$ Optimum = 221
Unconstrained Optimization (5)

- \(K_1 = 500 \quad K_2 = 24 \quad X^* = 4.56 \)

Another application to Example

- Min: Costs = \(K_1 / x + K_2x \)
 s.t.: \(x \geq 4 \) (NEW MINIMUM)
- \(L = K_1/x + K_2x - \lambda(x + s^2 - b) \)
- \(L = 500/x + 24x - \lambda(x + s^2 - 4) \)
- \(500/x^2 + 24 - \lambda = 0 \quad 2\lambda s = 0 \quad x - s^2 = 4 \)
- If \(\lambda = 0, \quad x = 4.56, \quad \text{slack, } s^2 = 1.56 \)
 Optimum = 221
- not worth changing constraint
Summary of Presentation

- Important mathematical approaches
 - Lagrangeans
 - Kuhn-Tucker Conditions

- Important Concept: Shadow Prices

- THESE ANALYSES GUIDE DESIGNERS TO CHALLENGE CONSTRAINTS