Automobile

- Body
- Suspension / Chassis
- Engine / Exhaust
- Transmission
- Interior

Body - In - White

- Roof
- Quarter Panels
- Fenders
- Floor Pan
- Pillars

- Closures
 - Doors
 - Deck Lid
 - Hood
Where Do Metals Come From?

- Earth’s Crust: Igneous Rocks
 - 98.3% of crust is composed of only 8 elements:
 - Oxygen -- O
 - Silicon -- Si
 - Aluminum -- Al
 - Iron -- Fe
 - Calcium -- Ca
 - Sodium -- Na
 - Potassium -- K
 - Magnesium -- Mg
 - Some metals occur naturally as an element:
 - Gold -- Au; Silver -- Ag; Platinum -- Pt; Copper -- Cu
 - However most metals occur in compounds as oxides or sulfides

RAW MATERIALS: ORE

- Naturally occurring aggregate of minerals from which a metal can be extracted at a profit.
 - Mixture of:
 - Primary valuable mineral (usually as compound)
 - Greatly predominate worthless "gangue"
 - Valuable by-products
 - Detrimental impurities
Important Ores for Steel & Aluminum

- **Hematite**
 - iron oxide (Fe₂O₃)
 - Metal Content: 69.9% Fe
 - Normal Ore Grade 20-70% Fe
 - Russia, USA, France, Australia, Canada, China, Sweden, Brazil, India

- **Magnetite**
 - iron oxide (Fe₃O₄)
 - Metal Content: 72.4% Fe
 - Normal Ore Grade 20-70% Fe
 - Russia, USA, France, Australia, Canada, China, Sweden, Brazil, India

- **Bauxite**
 - Hydrous aluminum & iron oxides
 - Metal content: 25-39% Al
 - Normal Ore Grade 25-39% Al
 - Australia, Guinea, Jamaica, Surinam, Russia, Guyana
RAW MATERIALS FOR PRODUCING STEEL

- ORE
- COAL
- LIMESTONE

ORE BENEFICIATION

(for iron ore or limestone)

Mining

0.1 - 1 meter size

Coarse Crushing

0.2 - 0.5 kWh / ton ore

Fine Crushing

0.5 - 2 kWh / ton ore

Coarse Grinding

1 - 10 kWh / ton ore

0.0001 m size (0.1 mm)

Micronizing

> 100 kWh / ton ore

Screening

homogeneous size
ORE BENEFICIATION-continued

- concentration
 - gravity separation
 - flotation
 - magnetic separation

- liquid / solid separation
 - thickening
 - filtration

- drying & calcination
 - removal of H₂O
 - removal of CO₂

- agglomeration
 - sintering
 - pelletizing

- concentrated ore

RAW MATERIALS: CARBON BASED FUELS

 Contains: Carbon, Hydrogen, Nitrogen, Sulfur, Oxygen, Oxides, Silicates

- Wood >40% Oxygen ~30% Carbon
- Peat ~30% Oxygen ~ % Carbon
- Lignite ~20% Oxygen ~ % Carbon
- Bituminous Coal ~ 5% Oxygen >90% Carbon
- Anthracite Coal ~ 2% Oxygen >95% Carbon

- High Calorific Efficiency means low ash content and low sulfur content

- Therefore coal is treated before its use in reducing ore to metal
High Temperature Coking

- Coal heated (1000 C) in atmosphere of low oxygen to:
 - impart improved properties for metallurgical processing
 - expel volatiles (to avoid contaminating iron/steel)
 - volatiles are rich in hydrogen and methane (CH4)
 - other off-gases: CO, CO₂, H₂O, VOCs, SO₂, NH₃, NOx, particulates (cyanides -hazardous sludges from scubbers, emission leaks)
 - 1-2% volatiles remain in coke
 - 67% of initial sulfur remains in coke

IRONMAKING: BLAST FURNACE

- Reducing Atmosphere
- Carbothermic Reduction Reaction
 - 2 FeO + C --- CO₂ + 2 Fe
- ~0.5 ton C used for every ton pig iron
- Produces 1.8 tons CO₂
- Other emissions: SO₂, NOx

- Pig Iron:
 - 4% Carbon
 - 0.5-1% Silicon
 - 0.5-1% Manganese
 - 0.05% Sulfur
 - 0.05% Phosphorus

- Capacity: 10,000 Ton / Day
STEELMAKING: BASIC OXYGEN FURNACE

- Charge
 - pig iron 70-80%
 - scrap 20-30%
 - lime
 - Fluorspar

- Oxygen Gas Jet through top lance

- Oxidize carbon and other impurities to slag

- Produce Plain Carbon Steel
 - 0.2% Carbon
 - 0.5% Manganese
 - 0.05% Sulfur max
 - 0.04% Phosphorus max

ORE BENEFICIATION- Bayer Process

45-65% Al₂O₃
10% FeO
3% TiO₂
<5% SiO₂

Goal: to dissolve as much alumina without impurity
Al₂O₃ + 2 NaOH = 2(NaAlO₂) + H₂O

Filter out RED MUD

NaAlO₂ + H₂O = NaOH + Al(OH)₃

Al₂O₃
ALUMINUM PRODUCTION: HALL CELL

- Electrochemical Processing -- US Capacity 4 million tons per year
 - cathode
 - anode
 - electrolyte
 - produces metal and gases

- Feed: Aluminum Oxide (Alumina) from Bayer process
 - dissolved in Na₃AlF₆ - AlF₃ - CaF₂

- Anode: Manufacture of Carbon Prebakes from coal, tar, pitch
 - 0.5 lb C needed to produce 1 lb Al

- Cathode: Carbon Liners

ENERGY!! Electricity drives the reaction
 -- Primary Smelting consumes 2% of total US power

Emissions from Aluminum Smelting

- Fugitive Emissions from Hall Cell
 - CO₂
 - Fluorides
 - particulates

- Anode Prebake Operation
 - SO₂
 - VOCs
 - PNAs
 - particulates

- Spent Potliners (150,000 ton/year disposed)
 - Fluorides
 - Cyanides
Alloy Designation System for Aluminum Alloys

WROUGHT ALLOYS
- 1XXX aluminum of 99% minimum purity or higher
- 2XXX copper (2-6%)
- 3XXX manganese (1-1.5%)
- 4XXX silicon (3-13%)
- 5XXX magnesium (0.5-5%)
- 6XXX magnesium & silicon (0.35-1.5% Mg & 0.2-1.8% Si)
- 7XXX zinc (4-8%)
- 8XXX other element
- 9XXX unused

CAST ALLOYS
- 1XX.X aluminum of 99% minimum purity
- 2XX.X copper (3.5-5%)
- 3XX.X silicon + (copper or magnesium) (5-18%)
- 4XX.X silicon (5-13%)
- 5XX.X magnesium (4-8%)
- 6XX.X unused
- 7XX.X zinc
- 8XX.X tin
- 9XXX other element

Metal Fabrication Techniques

- Forming Operations
 - Forging
 - Rolling
 - Extrusion
 - Drawing
- Casting
- Miscellaneous
 - Sand
 - Die
 - Investment
 - Welding
 - Powder Metallurgy
Materials Choices

- Affect Manufacturing
- Affect Fabrication
- Affect Product Use
- Affect Disposal