ESD.123. Industrial Ecology of the Automobile

Session 3:
Pertinent Manufacturing Processes
or From Dirt to Vehicles

Group Assignment

- The task for each group will be:
 - Propose a vehicle design which suits the goals of your interest group

 Note: Design changes will be limited to changing the material from which the body-in-white is made

 - Propose a policy which will promote the development and adoption of your proposed vehicle

- Tools for detailed analysis
 - Cost models
 - Environmental inventory
 - Inventory evaluation tools
What is in an Automobile?

- Plastics 8%
 - 7.7%
- Aluminum 7%
 - 6.6%
- Other Nonferrous 3%
 - 2.4%
- Lead 1%
 - 0.5%
- Zinc 1%
 - 0.4%
- Steel 59%
 - 57.0%
- Iron 13%
 - 12.0%
- Glass 3%
 - 3.1%
- Rubber 4%
 - 4.4%
- Fluids 6%
 - 2.6%
- Other 3%
 - 3.2%

Why Do We Care About Material?

- Choice of material impacts the
 - Manufacturing process
 - Product performance
 - Cost
 - Environmental impact?

- Three materials are the prime candidates for use in automotive bodies
 - Actually three groups of materials
 - Steel
 - *The current dominant material*
 - Aluminum
 - Polymer composites
 - *Ester Resin with Glass Fiber Reinforcement*
Production/Manufacturing Technologies

Automobiles are Mass-Production Products

What Does This Mean?
- Annual Production Volumes On The Order Of 100,000
- Production Rated On The Order Of 60-75 units/hour
- Have To Be Affordable To A Large Market

Contrast With Airplanes
- Annual Production Volumes Less Than 1000
- Production Rates On The Order Of 1/day
- Specialized Markets

These Differences Lead To Different Processing Requirements

How Do We Make Steel?

- Steel is Iron with a small amount of Carbon (~<1%)
- Iron makes up 5% of earth's crust
 - Steel first used ~1400 BC by Chalybes, SE of Black Sea
- Two major steps:
 - Make Iron
 - Blast Furnace
 - Make Steel
 - Basic Oxygen Furnace
 - BOF

Iron Ore → Coke → Limestone → Blast Furnace → Lime → Iron → Scrap → Basic Oxygen Furnace → Steel
Making Steel Step One - Blast Furnace

- Raw Materials
 - Iron Ore
 - Usually iron oxides
 - Coke
 - Limestone
 (and/or other fluxes)

- What is happening?
 - Carbon in coke serves as reducing agent
 - \(\text{Fe}_2\text{O}_3 + 3\text{CO} \rightarrow 2\text{Fe} + 3\text{CO}_2 \)

Inputs (kg)	Outputs (kg)
Ore 1600 | Top Gas 2300 |
Coke 450 | |
Limestone 190| |
Blast Air | Slag 300 |
Fuel 50 | Iron 1000 |

Inputs (kg)	Outputs (kg)
Ore 1600 | Top Gas ~150 (CO₂)
Coke 450 | |
Limestone 190| |
Blast Air | Slag |
Fuel 50 | Steel 1000 |

Making Steel Step Two - Basic Oxygen Furnace

- Must reduce the amount of carbon in the iron

- Raw Materials
 - Pig Iron
 - From blast furnace
 - Scrap
 - Limestone
 and other fluxes

- Dissolved carbon is oxidized

- Releases about 0.25g particulates/ kg steel
Does This Account for ALL Important Impacts?

- **Don't forget feedstocks**
 - Their production may generate significant impacts
 - These impacts are pertinent life cycle effects

- **Consider Coke**
 - Coal is baked down to carbon
 - Releases

<table>
<thead>
<tr>
<th></th>
<th>per Kg Coke</th>
<th>per Kg Steel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particulates</td>
<td>.25g</td>
<td>100g</td>
</tr>
<tr>
<td>SO₂</td>
<td>1.5g</td>
<td>600g</td>
</tr>
<tr>
<td>NOₓ</td>
<td>.13g</td>
<td>53g</td>
</tr>
<tr>
<td>Energy</td>
<td>2.3 MJ</td>
<td>920 MJ</td>
</tr>
</tbody>
</table>

How Do We Make Aluminum?

- Aluminum makes up 8% of the earth's crust
 - Al production process discovered in 1886

- Bauxite is the primary ore
 - 40-60% Alumina

- Two major steps:
 - Extract Alumina from Bauxite
 - **Bayer Process**
 - Electrolytically reduce Aluminum from Alumina
 - **Hall-Heroult Process**
Making Aluminum Step One - Bayer Process

- Because bauxite contains many minerals, the alumina must be extracted.
- Alumina is preferentially dissolved in NaOH
- Al(OH)₃ is precipitated out
- Al(OH)₃ is calcined to Al₂O₃
- Remaining caustic sludge is referred to as red mud
 - Iron oxides give reddish color

To Produce 1000kg of Al

<table>
<thead>
<tr>
<th>Bauxite</th>
<th>NaOH</th>
<th>Limestone</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-5000 kg</td>
<td>400 kg</td>
<td>90 kg</td>
</tr>
</tbody>
</table>

Bayer Process

Al₂O₃
1900kg

Process Releases

<table>
<thead>
<tr>
<th>Particulates</th>
<th>per Kg Al₂O₃</th>
<th>per Kg Al</th>
</tr>
</thead>
<tbody>
<tr>
<td>100g</td>
<td>200g</td>
<td></td>
</tr>
<tr>
<td>Red Mud</td>
<td>1.75kg</td>
<td>3.5kg</td>
</tr>
</tbody>
</table>

Making Aluminum Step Two - Hall-Heroult Process

- Aluminum in alumina is electrolytically reduced
 - Anodes are made of carbon
 - Electrolyte, called cryolite, is mixture of
 - AlF₃ & Na₃AlF₆

To Produce 1000kg of Al

<table>
<thead>
<tr>
<th>Alumina</th>
<th>C Anodes</th>
<th>Cryolite</th>
</tr>
</thead>
<tbody>
<tr>
<td>1900kg</td>
<td>450kg</td>
<td>20kg</td>
</tr>
</tbody>
</table>

Hall-Heroult Process

Aluminum
1000kg

Process Releases

<table>
<thead>
<tr>
<th>CO₂</th>
<th>per Kg Al</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.6kg</td>
<td></td>
</tr>
<tr>
<td>Particulates</td>
<td>1.4g</td>
</tr>
<tr>
<td>SO₂</td>
<td>8g</td>
</tr>
<tr>
<td>NOₓ</td>
<td>3g</td>
</tr>
<tr>
<td>HF</td>
<td>.25g</td>
</tr>
<tr>
<td>Fluorocarbons</td>
<td>some</td>
</tr>
<tr>
<td>Electricity</td>
<td>60MJ</td>
</tr>
</tbody>
</table>
How Do These Two Compare?

- Emissions per kg of product
 - Kilograms released for each kilogram produced

What If We Look at an Entire Product?

- Emissions from two different BIW designs
 - Aluminum is still mostly worse
Why Look at Aluminum?

- Trade offs in other parts of vehicle life cycle
 - Major reduction of BIW weight
 - Steel - 250 kg
 - Aluminum - 141 kg
 - Reduces vehicle fuel use and emissions

![Total Emissions Chart](chart.png)

What is Next?

- At this point, for both steel and aluminum, we are left with a large block of material called a billet
- Before final processing, billets are flattened using rollers until they become sheets
- Compared to the previous steps, the energy used and environmental releases are small
Final Processing

- Current steel body parts are almost entirely made using one forming process - stamping
- Metal sheets are pressed between two interlocking dies

Metal Stamping

- Stamping is useful for both steel and aluminum
- Aluminum tends to require
 - Slower line rates
 - More aggressive lubrication
 - More rejects
- Why is stamping useful?
 - Fast cycle times
 - Approx. Seconds
Polymer Forming

In comparing material alternatives, we will look at polymer alternatives

- For cost modeling, we will look at one processing method - Sheet Molding using Sheet Molding Compound (SMC)
- SMC is made up of thermoset resin and glass fiber reinforcement
- SMC is pressed between two interlocking molds

Polymer Sheet Molding

- Advantages of SMC
 - Low equipment and tooling costs
 - Increased design flexibility
- Disadvantages
 - Long cycle times
 - Polymer must be reacted to make part solid
 - Reaction is initiated using heat
 - To ensure dimensional control - reaction occurs in mold
 - Molding equipment tied up during reaction
 - Requires different joining techniques