The Materials Which Make Up an Automobile

Understanding the Upstream Processes and Burdens Associated with Materials and Parts Production

TPP 123

Group Assignment

- The task for each group will be:
 - Propose a vehicle design which suits the goals of your interest group

 Note: Design changes will be limited to changing the material from which the body-in-white is made

 - Propose a policy which will promote the development and adoption of your proposed vehicle

- Tools for detailed analysis
 - Cost models
 - Environmental Inventory
 - Inventory evaluation tools
Why Do We Care About Material?

- Choice of material impacts the
 - Manufacturing process
 - Product performance
 - Cost
 - Environmental impact?

- Three materials are the prime candidates for use in automotive bodies
 - Actually three groups of materials
 - Steel
 - *The current dominant material*
 - Aluminum
 - Polymer composites
 - *Ester Resin with Glass Fiber Reinforcement*

Materials Matter -- Energy Use Primary / Secondary

- The choice of material and its source can have a big impact on the environmental impact of the product

<table>
<thead>
<tr>
<th>Material</th>
<th>Energy for Primary Prod (MJ/kg)</th>
<th>Energy for Secondary Prod (MJ/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>189</td>
<td>27</td>
</tr>
<tr>
<td>Cu</td>
<td>100</td>
<td>45</td>
</tr>
<tr>
<td>Steel</td>
<td>40</td>
<td>18</td>
</tr>
<tr>
<td>Mg</td>
<td>285</td>
<td>27</td>
</tr>
<tr>
<td>Lead</td>
<td>41</td>
<td>8</td>
</tr>
<tr>
<td>Polyester</td>
<td>96</td>
<td>50</td>
</tr>
<tr>
<td>PP</td>
<td>74</td>
<td>42</td>
</tr>
</tbody>
</table>
What is in an automobile?

- Steel 59%
- Iron 13%
- Glass 3%
- Rubber 4%
- Other 3%
- Plastics 8%
- Aluminum 7%
- Other Nonferrous 3%

Why Care About Automobile Recycling

- Autos are significant consumers of resources
 - Aluminum 19%
 - Lead 70%
 - Platinum 41%
 - Rubber >60%
 - Iron 35%
 - Steel 14%
What is Steel?

Steel is Iron with a small amount of Carbon (~<1%)

Iron makes up 5% of earth's crust
- Steel first used ~1400 BC by Chalybes, SE of Black Sea

Two major steps:
- Make Iron
 - Blast Furnace
- Make Steel
 - Basic Oxygen Furnace (BOF)
Making Steel Step One - Blast Furnace

- **Raw Materials**
 - Iron Ore
 - Usually iron oxides
 - Coke
 - Limestone
 (and/or other fluxes)

- **What is happening?**
 - Carbon in coke serves as reducing agent
 - \(\text{Fe}_2\text{O}_3 + 3\text{CO} \rightarrow 2\text{Fe} + 3\text{CO}_2 \)

Inputs (kg)
- Ore 1600
- Coke 450
- Limestone 190

Outputs (kg)
- Top Gas 2300
- Blast Furnace
- Iron 1000
- Slag 300

Making Steel Step Two - Basic Oxygen Furnace

- **Must reduce the amount of carbon in the iron**

- **Raw Materials**
 - Pig Iron
 - From blast furnace
 - Scrap
 - Limestone
 and other fluxes

- **Dissolved carbon is oxidized**

- **Releases about .25g particulates/ kg steel**

Inputs (kg)
- Iron 865
- Scrap 170
- Limestone 80

Outputs (kg)
- Top Gas ~150 (CO₂)
- Steel 1000
- BOF
How Do We Make Aluminum?

- Aluminum makes up 8% of the earth’s crust
 - Al production process discovered in 1886
- Bauxite is the primary ore
 - 40-60% Alumina
- Two major steps:
 - Extract Alumina from Bauxite
 - Bayer Process
 - Electrolytically reduce Aluminum from Alumina
 - Hall-Heroult Process

Making Aluminum Step One - Bayer Process

- Because bauxite contains many minerals, the alumina must be extracted.
- Alumina is preferentially dissolved in NaOH
- Al(OH)$_3$ is precipitated out
- Al(OH)$_3$ is calcined to Al$_2$O$_3$
- Remaining caustic sludge is referred to as red mud
 - Iron oxides give reddish color

To Produce 1000kg of Al

<table>
<thead>
<tr>
<th></th>
<th>Bauxite</th>
<th>NaOH</th>
<th>Limestone</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4-5000 kg</td>
<td>400 kg</td>
<td>90 kg</td>
</tr>
</tbody>
</table>

Bayer Process

Alumina

Al$_2$O$_3$ 1900kg

Process Releases

<table>
<thead>
<tr>
<th></th>
<th>per Kg Al$_2$O$_3$</th>
<th>per Kg Al</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particulates</td>
<td>100g</td>
<td>200g</td>
</tr>
<tr>
<td>Red Mud</td>
<td>1.75kg</td>
<td>3.5kg</td>
</tr>
</tbody>
</table>
Making Aluminum Step Two - Hall-Heroult Process

- Aluminum in alumina is electrolytically reduced
 - Anodes are made of carbon
 - Electrolyte, called cryolite, is mixture of AlF_3 & Na_3AlF_6

To Produce 1000kg of Al

<table>
<thead>
<tr>
<th></th>
<th>Alumina</th>
<th>C Anodes</th>
<th>Cryolite</th>
</tr>
</thead>
<tbody>
<tr>
<td>1900kg</td>
<td>450kg</td>
<td>20kg</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>per Kg Al</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO2</td>
<td>1.6kg</td>
</tr>
<tr>
<td>Particulates</td>
<td>1.4g</td>
</tr>
<tr>
<td>SO2</td>
<td>8g</td>
</tr>
<tr>
<td>NOx</td>
<td>3g</td>
</tr>
<tr>
<td>HF</td>
<td>.25g</td>
</tr>
<tr>
<td>Fluorocarbons</td>
<td>some</td>
</tr>
<tr>
<td>Electricity</td>
<td>60MJ</td>
</tr>
</tbody>
</table>

Process Releases

<table>
<thead>
<tr>
<th></th>
<th>Kg Released per Kg Produced</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO2</td>
<td>12</td>
</tr>
<tr>
<td>SO2</td>
<td>10</td>
</tr>
<tr>
<td>NOx</td>
<td>8</td>
</tr>
<tr>
<td>NM VOC</td>
<td>6</td>
</tr>
<tr>
<td>Dust</td>
<td>4</td>
</tr>
</tbody>
</table>

How Do These Two Compare?

- Emissions per kg of product
 - Kilograms released for each kilogram produced

Emissions from Production
What If We Look at an Entire Product?

- Emissions from two different BIW designs
 - Aluminum is still mostly worse

![Graph showing Emissions from Production](image1)

Why Look at Aluminum?

- Trade offs in other parts of vehicle life cycle
 - Major reduction of BIW weight
 - Steel - 250 kg
 - Aluminum - 141 kg
 - Reduces vehicle fuel use and emissions

![Graph showing Total Emissions](image2)
Polymer Usage in the Car

- Polymer usage has been growing in the car for 40 years

![Graph showing polymer usage in the car over time.](image)

How are polymers used?

<table>
<thead>
<tr>
<th>Part</th>
<th>Main Plastics Types</th>
<th>Weight in Avg Car (Kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bumpers</td>
<td>PP, ABS, PC</td>
<td>10</td>
</tr>
<tr>
<td>Seats</td>
<td>PUR, PP, PVC,</td>
<td>13</td>
</tr>
<tr>
<td>Dashboard</td>
<td>PP, ABS, PA, PC, PE</td>
<td>15</td>
</tr>
<tr>
<td>Fuel systems</td>
<td>PE, POM, PA, PP</td>
<td>7</td>
</tr>
<tr>
<td>Body (including panels)</td>
<td>PP, PPE, UP</td>
<td>6</td>
</tr>
<tr>
<td>Under the hood components</td>
<td>PA, PP, PBT</td>
<td>9</td>
</tr>
<tr>
<td>Interior Trim</td>
<td>PP, ABS, PET, POM, PVC</td>
<td>20</td>
</tr>
<tr>
<td>Electrical components</td>
<td>PP, PE, PBT, PA, PVC</td>
<td>7</td>
</tr>
<tr>
<td>Exterior Trim</td>
<td>ABS, PC, PBT, ASA, PP</td>
<td>4</td>
</tr>
<tr>
<td>Lighting</td>
<td>PP, PC, ABS, PMMA, UP</td>
<td>5</td>
</tr>
<tr>
<td>Upholstery</td>
<td>PVC, PUR, PP, PE</td>
<td>8</td>
</tr>
<tr>
<td>Other reservoirs</td>
<td>PP, PE, PA</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>105</td>
</tr>
</tbody>
</table>
Polymer Processing

- Due to variety it is difficult to settle on one process
- Key steps:
 - Extraction
 - Distillation
 - Cracking
 - Yield of 85 - 95% -- product out / feedstock in
 - Polymerization
 - Yield of 99%
 - Forming

Automobile Production / Manufacturing

- Automobiles are Mass-Production Products
- What Does This Mean?
 - Annual Production Volumes On The Order Of 100,000
 - Production Rated On The Order Of 60-75 units/hour
 - Have To Be Affordable To A Large Market
- Contrast With Airplanes
 - Annual Production Volumes Less Than 1000
 - Production Rates On The Order Of 1/day
 - Specialized Markets
- These Differences Lead To Different Processing Requirements
What is Next?

- At this point, for both steel and aluminum, we are left with a large block of material called a billet.
- Before final processing, billets are flattened using rollers until they become sheets.
- Compared to the previous steps, the energy used and environmental releases are small.

Final Processing

- Current steel body parts are almost entirely made using one forming process - stamping.
- Metal sheets are pressed between two interlocking dies.
Metal Stamping

- Stamping is useful for both steel and aluminum
- Aluminum tends to require
 - Slower line rates
 - More aggressive lubrication
 - More rejects
- Why is stamping useful?
 - Fast cycle times
 - Approx. Seconds

Polymer Forming

In comparing material alternatives, we will look at polymer alternatives

- For cost modeling, we will look at one processing method - Sheet Molding using Sheet Molding Compound (SMC)
- SMC is made up of thermoset resin and glass fiber reinforcement
- SMC is pressed between two interlocking molds
Polymers Sheet Molding

- **Advantages of SMC**
 - Low equipment and tooling costs
 - Increased design flexibility
- **Disadvantages**
 - Long cycle times
 - *Polymer must be reacted to make part solid*
 - *Reaction is initiated using heat*
 - *To ensure dimensional control - reaction occurs in mold*
 - *Molding equipment tied up during reaction*
 - Requires different joining techniques