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15.1 THE ISSUE

Most of engineering planning and design assumes that we know the strength,
cost, and performance of our materials, that we can determine what the loads
on a system will be and how it will respond. This assumption is convenient
because

« It enormously simplifies the complexity of design—we can deal with only one
situation instead of the many combinations of possibilities that would occur if
different parameters took on different values.

* It allows designers to bypass the mathematical difficulties of probability and
statistics—never popular subjects.

Unfortunately, this convenient assumption is generally false. Nothing is really
certain in this world (except death and taxes, as the saying goes, and these are
even uncertain as to time and amount). The fact is that our environment is not
deterministic; it is probabilistic.

Experienced designers are well aware of the inconvenient reality of risk.
They know that the stated strength of materials is a crude approximation; that,
for example, tests of bars of steel with a nominal strength of 40 ksi will actually
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yield values mostly distributed above that value but with some below. They know
that the costs of a project are extremely difficult to estimate accurately. They also
know that forecasts of traffic, of growth, of demand for a product are notoriously
unreliable. Numerous retrospective analyses have demonstrated the truism that
“The forecast is always wrong.”

Costs specifically are difficult to estimate, even in the simplest situation.
Cost overruns are not a peculiarity of military spending; who has not found
out that the cost of repairing a car or television set is quite different from the
estimate? Figure 15.1 documents a specific case of this phenomenon. It concerns
the cost of resurfacing airport runways, which is one of the very simplest projects
to estimate. A resurfacing project requires one to roll asphalt over a relatively
flat and smooth surface of clearly specified dimensions. It is a low-technology
job, involving known quantities and no hidden elements. And yet, as Figure 15.1
shows, professional engineers have great difficulty in making correct estimates
of the cost of this simple project. Weather is a factor, the performance of
management or labor is variable, there may or may not be competition to lower
the cost of the job. It turns out that the real costs are not only higher than the
estimates on average (an understandable bias) but, most importantly, are broadly
distributed!

Forecasts of future loads on a system are especially subject to large error.
This is because it is people who ultimately place demands on the system—
by choosing to use electricity, to call their friends, or to buy a product—and
people’s psychology and reasons for choice are almost beyond comprehension.
This phenomenon is nicely illustrated by the analysis of the forecasts of the
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Ratio of Actual to Estimated Costs

FIGURE 15.1 .
Probability distribution of ratio of real to estimated costs for routine airport
projects (data in constant dollars for Western United States).
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TABLE 15.1

Unreliability of forecasts as illustrated by
large median error (source: U.S. FAA six-
year forecasts)

Forecast Forecast error

passengers (median, %)
U.S. Domestic > 15.8
U.S. International > 20.4

U.S. Federal Aviation Administration. This agency employs the most competent
professionals, using the most careful procedures, to publish annual forecasts
of airline traffic. They have been doing this for about 30 years, which allows
us to estimate their reliability with confidence. Table 15.1 shows the result
of one of many analyses of the FAA data: their median error in forecast in
just six years is about 20%! This example helps make the point: Forecasts are
unreliable.

What difference does this make? One might well ask. Is it not equally likely
that the actual numbers are above as below the forecast? That the errors cancel
out over the long run? That we do just as well by sticking to the deterministic
forecast? The answer is no and again no. The distributions do matter.

Most immediately, the distributions affect evaluation because they often
involve ratios, such as for benefit-cost. The average value of such ratios is simply
not the ratio of the averages of the numerator and denominators. Specifically,

B EV(B)
EV(C) * EV(C)

where EV(+) is a standard notation to indicate expected value. Evaluations based
on deterministic or average forecasts can thus easily be incorrect. (See box for
concrete examples.)

Additionally, it is normal for people to feel quite differently about relative
departures from the average. Typically, a catastrophic loss is much more sig-
nificant to a person than a spectacular gain. In general, as developed fully in
Chapters 18 to 20, people value relative gains and losses in a highly nonlinear
manner. This phenomenon makes it even more inappropriate to focus on linear
averages.

The bottom line is both that there is considerable uncertainty in the benefits
and costs of a system, and that it matters. Neglecting the uncertainty is valid only
as a first approximation, when the consequences are not especially important nor
the situation especially risky. In general, however, the system designer must deal
with risk, and must first of all assess it.
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Average Benefit/Cost versus Ratios of Average Benefits and Costs

Consider a simple example where the benefits and costs are symmetrically
distributed around their respective averages. The benefits are either 2 or 10,
EV(B) = 6; the costs are 2 or 4, EV(C) = 3. The ratio of average benefits to
costs is thus:

EV(B) 6

EV(C) 3

Now consider two possible cases. The average benefit/cost ratio for each
is significantly different from the above ratio of averages.

Case 1: Benefits and Costs Are Independent

These parameters may easily vary quite independently of each other. The benefits
might fluctuate according to the whims of the public or the success of marketing,
neither of which may bear any relation to the relative success in controlling costs.
In this case there are four possible combinations:

Result Benefit Cost B/C
Wild success 10 2 5
Success 10 4 2.5
Breakdown 2 2 1.0
Loss 2 4 0.5
Average 2.25

Case 2: Benefits and Costs Are Correlated

Both factors may also sometimes be correlated. Good management will success-
fully control costs and market the project and bad management will not. In this
case there are only two possibilities:

Result Benefit Cost B/IC
Wild success 10 2 5
Loss 2 4 0.5
Average 2.75
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15.2 METHODS

Estimates of probability and risk can be made by one of four basic methods. In
order of increasing judgment and difficulty, these are:

* Logic

+ Frequency

« Statistical Models
+ Judgment

These are presented in turn.

This discussion is primarily directed toward the explicit estimate of p_rob—
ability distributions. It also applies to estimates of specific levels of any item
of interest, such as the cost of a new facility. Indeed, once we recognize that
no parameter can be known with absolute certainty, every estimate-must*
whether we like it or not—be considered part of a probability distribution. An
estimate of the level of any parameter must realistically be considered a most
likely or modal value, which could vary over some range—whether that is

expressed or not.

Logic. In some cases probabilities can be deduced by logical argument. This
occurs when the number of possibilities is finite and can be defined in advance,
and when the mechanism that creates the outcomes is clearly specified. These
cases are extremely rare in practice. .

Logic is most easily applied to problems involving card games, the rolling
of dice, roulette wheels, and the like. For example, we may calculate the prob-
ability of obtaining a queen from a deck of cards as —llg—assuming that the
pack is a complete, standard set without any jokers and has been thoroughly
shuffled. )

This method permits exact calculations of the probability of many compli-
cated situations. For example, you could use logic to estimate the probability- of
getting a pair of aces when your opponent has two kings, and other items of sim-
ilar interest. It therefore occupies an important place in textbooks on probability.
Unfortunately, real problems in systems design do not generally meet the narrow
conditions necessary to make this method practical.

Frequency. Many probability distributions can easily be estimated simply .by
observing the frequency with which events have occurred in the pas.t. Qbservm'g
these frequencies is the same as observing the past probability diStI‘lbuthI.l.. This
approach thus applies when we can reasonably assume that the probability of
future events has not been altered by any process that has occurred between the
time of observation and the moment of interest.

The frequency method is therefore routinely applied to natural phenorn;na
such as earthquakes and patterns of rainfall. It should not be applied unquestion-
ably to these problems, however. Just because an event is produced by nature
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does not mean that it is unchanged by anything we do. The number of earth-
quakes, for example, routinely increases when we build a major water reservoir
in a region: the heavy load of the water can cause abrupt settlements. Likewise,
patterns of rainfall can vary when human settlement eliminates forests and dis-
charges warm particulate matter to the atmosphere.

This method can also be applied to many aspects of engineered systems,
especially those where reason or experience indicates that the probability distri-
butions are reasonably constant. For example, the probability distribution of the
length of telephone calls, a pattern needed to design efficient telephone systems,
has been traditionally estimated by the past frequency of calls of specified length.
(See box for another example.)

In applying the method we must always be on the lookout for reasons
why the process has changed and past frequencies are no longer good estimates
of the probability distribution. This typically occurs when technology changes.
The length of telephone calls in many cities, for example, has been noticeably
changed by the way people use personal computers to access mainframes over
the telephone network.

Probability of Failure of Dams

Until recently, the major U.S. agencies in charge of the construction of dams
assumed that their probability of failure was zero. The line was that “well-built
dams” (to be understood as ours) “do not fail.” This is a good example of the
overconfidence discussed in Section 15.5. It is also an argument difficult to
maintain in the face of the failure of a major dam such as the Teton Dam in
Idaho.

Colleagues and I estimated the probability of failure of major dams on behalf
of the U.S. Water Resources Council. We did this by frequency analysis.

Our first step was to identify a period over which the frequency of failure
could reasonably be considered stable. We took this to be the period backward
toward the last major change in the technology of construction of dams, specifi-
cally the development of the methods to build large concrete dams safely.

We then turned to the catalogs listing the major dams worldwide to identify
both their number in any year and the cases of failure. We could thus calculate the
accumulated experience with major dams, which we measured in “dam-years,”
and compare it to the observed number of failures.

The probability of failure of major dams'thus turns out to be

P(Failure of Dam) = 10™* per dam-year

Specifically, a major dam that opérates for 100 years has an estimated
probability of failure of

P(Failure of Dam) = 1% over life of dam
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Statistical models. Statistical models for the estimation of parameters combine
the main elements of both the frequency method and the judgment method, which
is described below. A statistical model is essentially one or more equations
describing a relationship between some parameter, y, and other quantities, x;:

y = fx)
These models are derived by statistical analysis of past data on y and x;, as
described in specialized texts.

Because these models rely on past data, they incorporate the assumption of
the frequency method that the situation in the past can legitimately be extrapolated
to the present or future. Additionally, these methods incorporate judgment, which
is involved in specifying the exact form of the function f(x;). Even if theory sug-
gests the general ingredients of the function, much judgment is required to spec-
ify its exact form. Economic theory indicates, for example, that the quantity of an
item that will be bought depends on its price and quality. The actual form of the
equation combining price and quantity, whether additive or multiplicative, and the
precise way these quantities should be measured is not uniquely specified by
theory. Much judgment is thus involved in using statistical models.

Statistical models tend to be deceptive. This is because they typically appear
to be very technical and sophisticated. From a strictly mathematical point of view,
these models may indeed be very precise. This fact does not, however, preclude
the other reality that the sophisticated analysis is based on judgments that are open
to question. The result is that, despite the appearance of precision, statistical
models are generally about as inaccurate as methods based on judgment alone. A
chain is as strong as its weakest link. Table 15.1 made the point, as does Figure
15.3 subsequently.

Judgment. Many estimates must, finally, be based on judgment. Systems design-
ers may, for example, be required to estimate the cost or performance of a new
space shuttle, computer, or material. Managers may have to estimate the public’s
acceptance of a new product or operation as against other alternatives. In general
analysts often have to deal with situations for which there is no exact precedent.
Unique situations preclude the use of frequency or statistical means to provide
estimates. The analyst may, of course, use previous experience to guide the
estimate but will, at the end, have to rely on judgment.

The estimates derived from judgment are known as subjective probabilities,
subjective in that they emerge from individual feelings about a situation rather
than purely from objective measures. Subjective probabilities are often highly
debatable, even if they are derived from expert opinion. Individual experts are
often quite positive about their estimates, an overconfidence dlscussed in Section
15.5, but groups of experts are quite likely to disagree.

While subjective estimates are often questionable, they will often be all the
analyst has and must, therefore, be used as a start. Because these estimates are
dubious it is important to revise them as soon as possible with additional infor-
mation about the situation. The proper revision of estimates is a key ingredient
to any risk assessment in practice.
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15.3 REVISION OF ESTIMATES

A frequent problem in risk assessment is that of revising preliminary estimates of
probability on the basis of new information. To appreciate the range of situations
in which it is necessary to know how to revise previous estimates of probability,
consider these examples:

* Exploration: Teams are sent out to prospect for desirable properties, such as
geologists looking for conditions favorable to oil.

* Experimentation: Prototypes are built and tested before full-scale production is
begun.

» Diagnosis: Routine tests are applied to a population to see which members
warrant special attention, as for a disease.

* Market studies: New products are distributed in specific areas to see how
customers will respond.

A most important feature of the problem is that, in general, the acquisition
of new information does not remove all uncertainty about a situation. New
information only changes our perception of the probabilities of various outcomes.
When exploratory geologists find a salt dome, for example, they have not proven
that oil is present; they have found a condition which makes oil more likely.
Even when drillers actually tap oil, they have not removed all uncertainty about
its extent or volume. Likewise, an experiment cannot prove or disprove that a
full-scale process will work. The experiment may have been faulty; there may
be difficulties extrapolating from the experiment to the larger reality.

There is also always uncertainty in the relation between the information
acquired and the phenomenon of interest. Formally, there is always the possibility
of “false positives” and “false negatives.” “False positives” are the erroneous
indications that a situation exists when it actually does not. For example, a person
reacts positively to a tuberculosis test when not infected. A “false negative” is
the opposite; it is the false indication that a situation does not exist. For example,
a person passes the tuberculosis test when actually infected. (See Section 17.3
for a detailed discussion.)

These are two formal methods for revising preliminary probabilities on
the basis of new information: Bayes’ Theorem and Likelihood Ratios. Bayes’
Theorem is the standard formula, and is best used when there is only one piece
of information to be incorporated in the revision of an estimated probability.
Likelihood ratios are best when there are many pieces of information.

The possibility that the new information is either incomplete or misleading
means that we must be careful how we mterpret it. This is especially important
because, as Section 15.5 indicates, the intuitive inethods people use are notori-
ously influenced by subjective, psychological biases.

Bayes’ Theorem. Bayes’ Theorem is a simple process for revising estimates of
probabilities. The difficulty in understanding it lies in the elements of the
formula. These are simple enough too, but generally are puzzling when first seen.
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There are four elements to Bayes’ Theorem. They are defined as follows.

1. The Prior Probability, P(E), of an event E. This is the preliminary estimate
of probabilities that you have before new information is acquired.

2. The Posterior Probability, P(E/O), of the event E after some information has
been acquired in the form of a specific observation O. This is the revised
estimate of probability. The notation E/O is to be read “E given that (or
conditional on) O having been observed.” It indicates that this piece of
information has been included in the estimate.

3. The Conditional Probability, P(O/E), of the observation and the event E. This
is the frequency with which an observation is associated with the existence of
E, for example, that salt domes (O) are present when there is oil (E). It is
important to note here that the relationship between O and E is not symmetric.
For example, the probability of observing that a person is male given that the
person is a king is: P(male/king) = 1.0, since by definition kings are men.
On the other hand, since there are only a few kings on earth, the probability
that any male is a king is about one in a billion: P(king/male) ~ 1077, In
general, P(O/E) # P(E/O).

Example for the Definition of Probabilities

Consider a factory with two kinds of staff: line workers, L, and staff, S. There
are 600 line workers and 150 staff. The ratio of the sexes in each category is
different: Men constitute 60% of the line workers and 10% of the staff.

Suppose that we were interested in the probability that a factory worker we
meet belongs to the staff:

1. The prior probability is the frequency of staff workers. They are 150 out of a
total of 750, so P(Staff) = 0.2.

2. The posterior probability after having made an observation, that he is male
for example, is P(Staff/Male). This is not obvious from the data and must
be calculated by Bayes’ Theorem (after the observation of the worker’s sex is
made).

3. The conditional probabilities in this case are the frequency of male staff
members: P(Male/Staff) = 0.1; P(Male/Line) = 0.6.

4. The probability of the observation of a male is their frequency among the total
number of factory workers

P(Male) = P(Male/Staff) P(Staff)
+ P(Male/Line) P(Line) = 0.5

This may also be viewed as the total number of men divided by the number
of factory workers.
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4. The Probability of the Observation, P(O). This is the probability of making
the observation, O, considering all the ways it may occur. (Note, this is
for a specific observation that has been made, not for a distribution over all
possible values that could be made.) The observation may indeed be associated
with outcome E;, and all the other possible outcomes E;. The probability of
observing O is then

P(0) = > P(O/E;) P(E;)

These definitions are illustrated by the example in the preceding box.
Bayes’ Theorem is a straightforward use of the above elements:

P(O/E)
PO) }
The revised estimate of probability is simply the preliminary, prior estimate
multiplied by a factor for revision, based upon an observation. Applying Bayes’
Theorem is direct, once the elements have been defined (see box).

The strength of the factor of revision of the estimate, that is, the ratio of the
prior and posterior estimates of the probability, depends on two considerations.

P(E/O) = P(E)[

Use of Bayes’ Theorem

We are at the same factory used to illustrate the definition of the different kinds
of probabilities. Being just about to meet a male worker, you want to estimate
the probability that he is on the staff.

You thus calculate:

P(Staff/Male) = P(Staff) { M/S_tafﬁ}

P(Male)

0.1
=0.27{ —| =0.
[ 0. 5} 0.04
Itis thus. apparent that the revision is quite strong, due to the disassociation of the
observation with the event of interest: few staff members are male, P(Male/Staff)
= 0.1. The prior probability is divided by five.
Conversely, if you wanted to use the observation that the member is a man
to revise the prior estimate that he is a line worker, you would calculate:
. _[06] ©
P(Line/Male) = 0.8{ —! = 0.96
0.5
The reyision here is not particularly strong (ratio = 1.2) since the frequency of
male line workers is about equal to that in the factory as a whole.
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These can be seen directly from the formula for the factor: {P(O/E)/P(O)}. The
revision is stronger when the observations are rare: the factor is greater when
the denominator P(O) is small. Conversely, the revision is stronger when the
observation is either closely associated with or quite disassociated from the event
of concern: the factor is greater when the numerator P(O/E) is near either extreme,
0 or 1.0. It follows that strongest revisions to initial estimates of probability will
be due to rare observations uniquely associated with the event of interest.

Likelihood ratios. Likelihood ratios provide a rapid means to revise prior esti-
mates of probability when one obtains a sequence of independent observations
bearing on some event. They enable us to bypass repeated applications of Bayes’
Theorem. This is convenient because it is quite tedious to apply Bayes’ Theorem
over and over. In addition to having to use the formula once for each observation,
one also has to recalculate P(QO) at each iteration because it changes with each
new estimation of P(E). The likelihood ratio permits us to collapse all this effort
into a single formula that never requires any recalculations.

The use of the likelihood ratio involves the concept of complementary
probability. The complementary probability of an event E is the probability
that event E does not occur, that is, that some other event or events, non-E,
occur instead. Since an event either occurs or not, P(E) and the complementary
probability, P(non-E) sum to one:

P(E) + P(non-E) = 1.0

For example, if P(E) is the probability that a person you meet in the street is
male, P(non-E) is the complementary probability that the person is female.

Notation: In discussing probabilities, the use of a horizontal line over a symbol
often indicates the nonexistence of that variable. This use can be confusing because
the same notation is sometimes used to denote average values of a variable. To avoid
difficulty, we will consistently refer to nonexistence of a variable X as “non-X.”

A likelihood ratio, LR, is simply the ratio of the probability of event E and
the probability of all complementary events, non-E:

_ P(E)
"~ P(non-E)

The likelihood ratio thus implicitly defines the probability of event E. Since
P(non-E) = 1 — P(E), we can express the formula for LR in terms of P(E) only.

Solving for P(E) we get
- IR
(1 +1LR)
The likelihood ratio is similar to the odds sometimes used in betting. In

t.xorse rac’mg, for example, it is usval to give odds in the form X:Y to win. Thus,
if a horse is 3:2 to win, it means that the estimate is that it has 3 chances to

P(E)
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lose for 2 to win. The likelihood ratio on losing is % = 1.5. The estimated
probability of losing is then

1.
2.

W

P(Lose) =

= 0.60

To explain the use of the likelihood ratio, consider first the simplest situation,
in which we have one observation. We have a prior estimate of probability P(E),
have made the observation, O;, and wish to obtain the posterior probability P(E/O;).
Defining LR; as the likelihood ratio after i observations, we have by definition
{P(E/Oj)}
IRy =————
{ P(non-E/O,)}
This can be restated by applying Bayes’ Theorem to both the top and bottom of
the ratio. We thus obtain

P(O,/E)

){ P(0)) }
P(Oj/non-E)
P(O;) }

LRI =
P(non-E){

This expression can be simplified by canceliation of the factor that is common
to both top and bottom of the ratio, P(O;). This elimination explains why P(O;)
does not have to be calculated when using likelihood ratios instead of Bayes’
Theorem. The result is
P(O,/E)
LR; = LRy{ =
P(O;/non-E)
That is, the revised likelihood ratio after one observation is the original likelihood
ratio times a factor uniquely associated with the observation. The posterior
probability, P(E/O;) can then be found as:
LR,
PEQ,) = ————
(E/0)) (1 + LRy

The likelihood ratio after some observation is conveniently restated using
the concept of the conditional likelihood ratio. The Conditional Likelihood Ratio,
CLR;, for any observation O, is defined as

[ PO;E)
CLR; = KP(Ojlnon-E)K

Using this concept the revised likelihood ratio after a sing(lé‘ observation O; is
then simply

LR; = LRo(CLRj)
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Note that the conditional likelihood ratio can be determined in advance regardless
of the number of observations. It does not depend on the actual estimate of
the probability of E. Use of this concept provides the way to define a single
formula to determine, in advance, the probability of E after a specified number
of observations.

The general formulation using likelihood ratios is an extension of the result
for a single observation. Each time an observation of type j is observed, one

Use of Likelihood Ratios

Consider a bottle-making factory. Suppose that its machines can either be OK
or, 10% of the time, defective:

PD) =0.1 P(OK) =0.9

The bottles sometimes come out cracked due to heat stresses. The frequenpy
of cracking depends on the state of the machine. Assume that this frequency is

P(C/D) =0.2 P(C/OK) = 0.05

If we sample 5 bottles produced by a particular machine and observe th_at
2 are cracked, and 3 are uncracked, what is the probability that the machine is
defective? That is, P(D/[2C, 3U]) = ?
To calculate this by likelihood ratios we need
PD) 0.1 _

i
*~POK) 08 9

together with the conditional likelihood ratios for each type of observation:

0.2
= =4
CLRc =505
0.8 16
LRy =095 = 19

We can then get the likelihood ratio after the five observations:

LRs = LRo (CLR.)? (CLR,)* = ( )(4)2 ( 16) = 1.062

Therefore:

LRs

—F— = 0.515
(1 + LRs)

P D/[2C, 3U)) =
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updates the likelihood ratio by the appropriate conditional likelihood ratio. Thus
LRy = LRy [ [ (CLR;)Y

where N is the total number of observations, N; is the number of observations
of type j, and N = > N;. Note carefully that the revision only depends on the
number of observations of each type, not on the order in which they are presented.
This general formulation is useful because it enables one to calculate directly the
effect of many different observations.

In practice, the use of the general likelihood ratio is simple:

1. Calculate LRy and the conditional likelihood ratio CLR; for each type of
observation O;.

2. Count the number of observations of each type .
3. Calculate LRy by formula.
4. Recover the revised estimate of the probability of event E.

Use of the likelihood ratio to revise estimates of probability assumes that we have
conditional probabilities for any of the observations O; that may be made. This
means that we have the frequencies P(O;/E) and P(O; /non -E). (See box.)

15.4 CONTINUOUS PROBABILITY
DISTRIBUTIONS

Conceptually, the revision of estimates of probability when the distribution is
continuous is the same as when the probabilities are discrete. In practice, how-
ever, the calculations are much more complicated. This section outlines these
difficulties, leaving the full treatment to specialized texts.

Dealing with continuous distributions involves a complex of related issues:

¢ Integrations must be used instead of summations.

* The information itself tends to come in distributions, rather than in discrete
pieces of data.

* The use of Bayes’ Theorem may become nearly impossible, when dissimilar
distributions have to be considered jointly.
By itself, the problem of integration is the simplest concern. For example,

in estimating the probability of an event, given all the ways it can occur, we
simply substitute the integration for the summation to obtain

P(O) = J pdf (O/E) dE

where pdf(*) denotes the probability distribution of a quantity.

© Copyright Richard de Neufville, All Rights Reserved
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The real difficulty arises when we consider the nature of th.e inform.atio.n we
receive. When dealing with continuous distributions, the new information 1ts_elf
tends to occur as a distribution. A typical situation is that engineers have a prior
estimate of the measurement of a quantity (such as the strepgth of a material . the
speed of an aircraft on the radar, the distance of a sat.elll.te) fmd then obtain a
second series of measurements, also as a probability dlstnbut}on. The pro!)lem
then becomes one of incorporating a probability distribution, instead of a single
piece of data, into Bayes’ Theorem. - . .

The melding of the two probability distributions, those of the prior estlmat.e
and of the new data, is generally problematical. It is only relatively easy if
the two distributions are “conjugate distributions,” that is, if they havq spec1ﬁc
convenient properties. When they do, Bayes’ Theorem can be applied qpxte
directly (see box). This is not always the case, however, and the calculations
can become extremely complicated.

Bayes’ Theorem for Continuous Probability

Colleagues at Stanford University undertook a study to determine hqw the esti-
mates of the compressibility of soil foundations were changed by the mformatxon
derived from soil samples. Focusing on the soil along the'San Francisco Bay,
they obtained the a priori estimates of experienced soils engineers, the resu'lts of
soils tests, and calculated revised estimates of the strength. All data were in the
form of probability distributions. o

The distributions used were those of the t-statistic, partly because it is the
proper distribution for a normal distribution whep bo’fh statistics' are unkn9wn,
partly because t-distributions are “conjugate functions” that permit the relatively
easy application of Bayes’ Theorem. . .

The expression for the revised estimates, using these convenient assump-

tions, was given by
pdf(true mean/m, k, d)
= d"*(d + k(wue mean — my?} "2 (b(1/2, dr2))
where

= pooled mean

= (sample variance) !
d = degrees of freedom

b(-) = beta function

R

The expression makes the point: a “simple” result for continuous probability
distributions is actually quite complex and tedious to calculate. Advanced texts
provide the details.
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15.5 BIASES IN ESTIMATION

Professionals must often estimate probabilities according to their best informed
Judgment. Although we might wish for objective measures, the reality must be
estimated subjectively, as Section 15.2 describes.

A key difficulty here is that people are biased estimators. As repeated
experiments demonstrate, both individuals and groups systematically provide
skewed estimates of the probability of events. This section describes the major
kinds of biases. The idea is to alert readers to their effects so that they can
compensate for them in practice.

Overconfidence is arguably the root cause of the common types of biases.
A general phenomenon is that all persons act as if they know much more about
a situation than they actually do. Even when they know they are quite ignorant
about a topic they typically endow their estimates with unwarranted precision.
Psychological theory offers many other reasonable explanations of why people
bias their estimates. However, the best guidance that can be offered to compensate
for the biases is: restrain your confidence; be modest.

Three most obvious manifestations of bias in the estimate of probabilities
are

* Overly narrow range of estimates
* Inadequate response to new information
* Hedging of estimates

These are each discussed below.

Narrow range of estimates. This is the prime case of overconfidence: people
regularly will estimate a quantity very precisely, within a narrow range, even
when they have little justification for such confidence. They are willing to say,
in effect, that there is a very high probability that the value is what they say it
is, and low probability that it is anything else. In this they are generally wrong.

In practice, this bias is manifest in two kinds of situations: the estimate of
different vatues and the forecast of future states. It is, of course, most immediately
evident when they deal with current values that can be checked. This is easily
shown in a classroom or for any group by asking simple questions whose answers
can be found in some reference work (the box on the following page provides an
example of these “almanac questions”).

The overconfidence that we can easily demonstrate using almanac questions
also routinely occurs in professional practice. The only difference is that we
rarely get a chance to observe it positively. We often do see that an expert’s
estimate turned out to be wrong. But sirice we rarely can see how often the
expert’s estimates are wrong, we cannot usually demonstrate the overconfidence.

A symposium held at MIT did demonstrate this overconfidence rather neatly,
however. In preparation for a speciality conference on soil mechanics, 10 world
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Length of River Nile

This is an example of the “almanac questions” that can be used to demonstrate
people’s overconfidence in their estimates. To conduct the experiment you need
to have a willing group of participants (a class or a group of colleagues), and
some specific physical facts that can be looked up in an encyclopedia or almanac.
These facts could be items such as the distance to the moon, the amount of rainfall
in July, or the population of Peru. The author’s favorite has been the length of
the River Nile.

The organizer of the experiment asks each participant to estimate the value
of the fact selected, and to provide the plus or minus range for this value such
that there is a 50:50 chance that it includes the true value. Note that it is easy to
provide a range that must include the true value; it presumably is minus to plus
infinity. This is also a uselessly broad estimate. In effect the organizer requests
each member to provide a best estimate with 50% confidence limits.

If the estimates were accurate, one should find that, on average, half of the
estimates actually did include the true value. This is not what happens. Typically,
oanly 10 to 20% of the estimates include the true value. The rest have excluded
it because they set their range much too narrowly: they were overconfident.

Test yourself: what do you estimate the length of the River Nile to be, with
plus or minus 50% confidence limits?

When the author asks this question in class he routinely gets answers such
as 500 *+ 200 miles, 1800 * 400 miles, and so on. The true value, hidden so
your eye did not catch the answer before you addressed the question, is slightly
more than twice the current year, in miles.

class experts were requested to estimate the strength of an embankment, with 50%
confidence limits. They were given a full set of data on the soil and the state of
the embankment. On one of the field trips associated with the conference, the
embankment was loaded until it failed, thus creating an almost unique opportunity
to demonstrate overconfidence among professionals.

The overconfidence was painfully obvious, as Figure 15.2 shows. In this
case not one of the experts included the true value in their 50% confidence limits.
Based on both psychological experiments and professional experience, this kind of
result appears quite standard. The lesson is: do not be overconfident in your own
estimates or those of others—allow generously for the possibility of being wrong.

Similarly, overconfidence in forecasting becomes evident when one com-
pares forecasts with what actually occurs. This is most easily done when forecast+
ers have provided high and low estimates, as they sometimes do. Figure 15.3isa
typical example of the comparison; the narrow range clearly excludes the reality,
and demonstrates overconfidence. Similar comparisons can be made for all kinds
of statistically based forecasts, because they normally provide confidence limits
on their parameters.
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FIGURE 15.2

Demonstration of overconfidence: The true value of the strength of the
embankment, as measured by the height of the load, was outside all of the
experts’ 50% confidence limits.

Inadequate response to new information. As another form of overconfidence,
people typically fail to adjust their estimates adequately to new information. They
are usually conservative, in that they tend to stick close to their initial estimates.
They indicate, in effect, that they know better and do not really need to be
influenced by new information.

The relative importance of the new information compared to the initial
estimate becomes evident by looking at the general formula for the likelihood
ratio:
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FIGURE 15.3
Overconfidence as demonstrated by the comparison of actual results and the
narrow range forecast by experts.

LRy = LRo| | (CLR)Y

The driving factor in this equation is the multiplication of powered conditional
likelihood ratios. After only a few observations the effect of LRy and the initial
estimates have been dissipated. The previous box illustrating the use of likelihood
ratios demonstrates this effect. We may thus conclude that, in general, analysts
should not be confident in their initial estimates; they should rather rely on the
evidence of multiple observations.

This phenomenon has been repeatedly demonstrated in carefully controlled
psychological measurements. It can also be informally demonstrated with col-
leagues (see box).

Hedging of estimates. People are said to “hedge” when they act so as to avoid
extremes and ensure that the outcomes of a situation are close to the averages.
The term is generally used in connection with investments, specifically when
investors buy insurance against the fluctuations of the market.

i
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Demonstrating Inadequate Response to Information

The organizer of the demonstration prepares by setting up a simple situation
and calculating possible results in advance. This person then asks a colleague
or members of a group to provide estimates of a quantity according to the
information provided. The comparison of the individuals’ estimates with the
proper estimate generated by Bayes’ Theorem demonstrates the overconfidence.
Typically, the individuals’ estimates change slowly when they should change
much more dramatically.

For example, consider an electronic assembly, with a 10% a priori prob-
ability of being faulty:

P(Faulty) = 0.10

Suppose that if the assembly is faulty it has a 50% probability of generating an
error signal:

P(Signal/Faulty) = 0.5
while a good assembly can also generate error signals, but at a lower rate:
P(Signal/Nonfaulty) = 0.1
The questions to ask are then, for example, what is the probability that a part is

faulty if repeated tests generate one error signal? One error and one OK? 2 error
signals? And so on.

The correct answers are conveniently found by the likelihood ratios. For
this case,

_ P(Faulty) 1

LR ="poR) =39
CLRsigna[ =5
CLROK = g

so that, after n tests:

1 ErTors é oks
=[] ()

For example, what would you estimate the probability of being faulty to be after
two error signals? Write down your answer and compare it with the correct

solution, calculated as
1 59 25
LR, ={—-|(5)*[=] ==
= [5)er(3] -3
so that
P(Faulty/2 Error Signals) ~ 70%
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People likewise hedge their estimates of a quantity when they provide
responses that avoid extreme values. They then act as if they are unwilling
to accept that the actual value of this quantity may be quite different from the
average. This bias is thus similar to the overconfidence previously discussed:
people avoid wide ranges.

The classic demonstration of hedging consists of asking individuals to esti-
mate the frequency of letters in a language, for example, in English. Their
answers will tend to cluster around the average value of 5‘3 = 4%, and they
will systematically underestimate the actual high frequency of common letters

such as “e,” and overestimate the frequency of im “q”

probable letters such as “q
and “z.” (Their usuval frequency is, in fact, 13% for “e” and 0.25% each for
6£q5’ and “Z,”

15.6 APPLICATIONS

This section provides a sequence of examples to illustrate the application of the

methods discussed.

Frequency estimates. The probability, the risk of many kinds of events, is

commonly deduced from careful examinations of the historical record. The

estimate of the probability of failure of large dams discussed in Section 15.2

is a good example of the process.
The same approach can also be used to estimate probability distributions.

This is commonly done for earthquakes, floods, and other natural events. It
can also be applied to recurrent human situations, such as the estimate of costs
discussed in Section 15.1. The method is suitable whenever the underlying causes

of the event of interest have not changed significantly from the past.

st commonly found in situations thought to be
larly economics. They are thus routinely
of a system, such as traffic on
and so on. They are equally
lement to quantity demanded

Statistical models. These are mo
well described by some theory, particu
used to estimate future demand for the services
a communications network, passengers in aviation,
used to estimate future prices (since price is the comp
ndard economics) as for oil and other commodities.
Statistical models, ultimately based on judgment for their form and thus
results, nicely illustrate the pervasive problem of overconfidence. The analyses
typically lead to narrow confidence limits on the values of the parameters—and
thus on the results. But as the discussion of the aviation forecasts in Section
15.1, and as Figure 15.3 shows, it is quite possible to be confident and wrong.
In fields that have been extensively analyzed it is furthermore possible
to obtain probability distributions on the parameters of statistical models using
the frequency approach. Figure 15.4 illustrates the result. It simply shows the
distribution of a key parameter of demand models, individual responsiveness to

in sta
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15.3. Lie Detector

Folayen, J. I., Hoeg, K., and Benjamin, J. R., (1970, 1976). Chapter 23 in de Neufville and
A lie detector has a hitting rate of 80% and a false alarm rate of 50%. That is,
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Soil Mechanics and Foundations, Vol. 96, July 1970, pp. 1127-1141.

PROBLEMS

15.1.

15.2.

Money Bags

You are a contestant on the “Money Bags” TV game program. Monty, the MC,

has placed two bags of cash in front of you and told you that you may take one of

them. One bag contains 60 $10 bills and 40 $1 bills while the other holds 20 $10
bills and 80 $1 bills. You do not know which bag has the $640, but you would
very much like to choose that one.

(a) Monty will let you draw a bill from one of the bags before you decide which
bag to choose. If you pull out a $10 bill from one of the bags, should you
choose that bag?

(b) If Monty lets you draw three bills from one of the bags, replacing each bill
before drawing the next, and you pull out one $10 bill and two $1 bills, which
bag should you take?

(¢) If Monty tells you to draw one more bill from the same bag before making
your decision, and you pull out a $10 bill (total sample: 2 $10 bills and 2 $1
bills), which bag should you choose? Explain the significance of drawing this
last $10 bill.

Diskette Drives

Suppose that you are the programming supervisor for a group developing software
for a new personal computer. Among your duties, you must select the number of
retries your programmers must attempt when their programs retrieve information
from the diskette drives.

Within this PC, you know that during an attempt to retrieve data from
the diskette drives, one of two things will occur: either the data is successfully
collected or the program receives a signal that the data cannot be retrieved. Thus,
you know that any program must take the following steps:

1. Request information from the diskette drive.
Check for the error signal.

3. If there is no signal, the data was collected successfully —continue to the next
step. _

4. If there is a signal, try step 1 again.

5. If the signal is detected N times in a row, abort the program.

You know that this error signal is generated whenever there is a diskette
problem; it also can occur even though there is nothing wrong with the diskette.
According to the device specifications, if there is a diskette problem, this signal
is generated 100% of the time. Alternatively, if there is no diskette problem,
this signal is generated 30% of the time. The probability that there is a diskette
problem is 20%.

How many attempts to read diskette data should be made if company policy
is that software should abort only if there is a 99% certainty that there is a diskette
problem?

15.4.

15.5.

15.6.

the probability of the machine giving a positive result (indicating “LIE!”) is 0.80
if the subject is lying, but 0.50 if the subject is telling the truth.
Suppose a subject is known a priori to have a 20% chance of lying on any

particular test.

{a) What is the probability that this subject is actually lying if the machine says
“LIE”?

(b) If the machine was improved by raising its hitting rate to 99%, how would
your answer to part (a) be modified? Is that a significant improvement?

(c) Suppose you now have a subject who you think will lie four times out of
five, on any trial. What is the new answer to part (a)? Does the lie detector
improve your prior belief?

VLSI Chips

A manufacturing line produces VLSI chips of which 25% do not meet specifica-

tions. An automatic testing device is used to run four different independent tests

on the chips. If a chip does not meet specifications, it has an 80% chance of

failing any one of the tests. A chip that does meet specifications will also fail the

tests 40% of the time.

(@) If a certain chip passes three of the tests but fails one, what is the probability
that the chip meets specifications?

(b) If one of the tests produces independent results when repeated a number of
times on a given chip, what is the minimum number of tests that must be run
to achieve 90% probabilty that the chip does not meet specifications?

Oil Drilling

In a certain oil-rich region, there is prior probability of % that any field will

produce a profitable oil well. Test drillings are made to determine whether or not

a well in a given field would be profitable. There is a 75% chance that the test

drilling would be positive if in fact a field would support a profitable well. There

is a 50% chance of a negative test if a field would not support a profitable well.

(a) Assuming two test drillings, one positive and one negative, are made in a
field, find the revised probability of producing a profitable well in the field
by (1) successive applications of Bayes’ Theorem; (2) likelihood ratios.

(b) If five tests are made, three positive and two negative, what is the revised
probability of producing a profitable well?

(c) When should likelihood ratios be used instead of Bayes’ Theorem? What
advantage do they have?

Sonny Reyes

Sonny Reyes, the famous photovoltaic (PV) manufacturer, is testing a new PV

panel. If a panel does not meet specifications it has a 80% chance of failing the

test. A panel that does meet specifications has a 20% chance of failing the test.

Overall, four in five panels meet specifications.

(a) Define the formula for the prior likelihood ratio for this problem.

(b) Define the conditional likelihood ratios for this problem.

(c) Write the formula for the posterior likelihood ratio, if a panel first fails and
then passes a second test.

(d) Solve for the posterior probability of a panel meeting specifications.
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15.7. SIDA Testing
The incidence of SIDA, a deadly disease, among a certain population is 0.01%.
Individuals, randomly selected from this population, are submitted to a SIDA
test whose accuracy is 99% both ways. That is to say, the proportion of positive
results among people known to be SIDA affected is 99%. Likewise, testing people
that are not suffering from the disease yields 99% of negative results. The test
gives independent results when repeated.
An individual tests positive.
(a) What is the probability that this person is actually affected? (Use both Bayes’
Theorem and likelihood ratios.)
(b) Discuss the above result as regards the interpretation of the positive result.
(¢) The test is then repeated twice. What is the probability that the person has
SIDA if all three tests are positive? If the two subsequent tests are negative?

15.8. Weather Expert
The radio predicts a 60% chance of freezing weather. Your meteorological friend,
May Vin, tells you she knows better: it is sure to freeze. From experience you
know that she only gets it right 80% of the time.
(a) What should your estimate of freezing weather be?
(b) What would it be if May had predicted “no freezing weather”?

15.9. Summer Goods

Of the summer goods, some are bad. Two percent are defective. Visual inspection

is cheap, but only correct half the time. A detailed examination, however, gives

a correct diagnosis 90% of the time. Normal procedure is to look the goods over

and then to examine in detail the ones that seem defective visually. Goods that

fail both tests are rejected.

(a) What percent of the goods that pass visual inspection are in fact defective?

(b) What percent of defectives are not detected by the total examination process?

(c) If the detailed examination were applied to all goods, what percent of defec-
tives would pass? Discuss whether you think this policy would make sense.

15.10. Championship Playoff

Before the infinite series, it looks as if either team A or B is equally likely to win

the series. Past frequency indicates that “champions” win 70% of their games.

(a) If team A wins the first game, what is the probability that it is a “champion™?

(b) Use Bayes’ Theorem to calculate how many times in a row team A should
win so that the probability that it is a “champion” is greater than 90%. Then
validate this by likelihood ratios.

(¢) What is the probability that any team is a “champion” if it wins 2 out of 3
games? 3 out of 57 4 out of 77

CHAPTER

16

DECISION
ANALYSIS

16.1 OBJECTIVE

This chapter presents the concept and methods of decision analysis, a fundameﬁ-
tally important method of evaluation. This is the approach that should be used
w'henever the outcomes of potential projects are highly uncertain. Since the plan-
ning and design of systems typically must deal with massive uncertainty about
thelfuture, as the previous chapter shows, decision analysis is a most valuable
tool.

IFormally, decision analysis is a method of evaluation that leads to three
results:

1. It structures the problem, which otherwise appears very confusing to most
pgople due to the complexities introduced by uncertainty (Sections 16.3 and
16.4).

2. It defines optimal choices for any period, based on a joint consideration of

the probabilities and the nature of any outcome of a choice, specifically by
calculation of an expected value (Sections 16.5 to 16.7).

3. It identifies an optimal strategy over many periods (Sections 16.8 and 16.9).

Decision analysis rests on the simple proposition that a planner or designer
should use all the important information available about a problem, specifically
the .fact that the performance of any system is uncertain. This premise makes
decision analysis very different from the traditional economic evaluations, which
focus only on the typical or most likely outcome of a situation.
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