Composite / Steel Cost Comparison: Utility

Composites offer the following:

- Advantages
 - Parts Consolidation Opportunities
 - Primary / Secondary Weight Savings
 - Low Investment Costs
 - Increased Design Flexibility

- Disadvantages
 - Materials and Labor Intensive Process
 - Long Cycle Times
 - Non-traditional Manufacturing Technology

What is the competitive position of composite parts compared to its steel comparator?

Cost Analysis: Methodology

- Composites Vehicle Design
 - Ford Composite Intensive Vehicle (CIV)
 - Complete Body in White : 8 pieces
 - BIW Weight : approx. 300 kg

- Steel Comparator
 - Honda Odyssey minivan
 - Based on Accord chassis, so comparable size
 - BIW Weight : approx. 400 kg

- Use steel stamping and assembly models to estimate Odyssey's BIW cost
- Use RTM and composites assembly models to estimate CIV's BIW cost
- Identify key process variables, cost drivers, necessary technical improvements
Conceptual Resin Transfer Molding Process Flow

Preforming
- Cut Reinforcement Material
- Thermoform
- Trim
- Foam Core / Preform Subassembly
- Resin Transfer Molding
- Trim/Inspect

Foam Core Molding
- Reaction Injection Mold
- Cure
- Trim
- Resin Transfer Molding

General RTM Cost Model Structure

Inputs:
- Material Composition
- Part Geometry
- Preform, Foam Core Geometry
- Exogenous Cost Factors
- Process Conditions
- Parameter Estimation Data

Secondary Calculations:
- Cycle Time Estimation
- Machine Cost Estimation
- Number of Machines
- Tooling Cost Estimation
- Number of Tools

Cost Estimation per Operation and Cost Summary
Resin Transfer Molding Cycle Time Estimation

- Cycle Time = Preparation Time + Fill Time + Cure Time

 - Preparation Time:
 - Mold Cleaning + Release Agent Coating + Gel Coating + Subassembly Placement + Mold Open/Close + Demold

 - Fill Time:
 - Based on D’Arcy’s Law of Flow through Porous Media
 - Six Mold Design Options
 - f(Fiber and Resin Material Properties, Injection Pressure, Mold Geometry)

 - Cure Time:
 - f(Arrhenius constants, Mold Temperature, Percent Conversion)
 - Rate Constants from typical values found in literature

RTM Fill and Cure Equations

- Fill Time
 - Based on application of D’Arcy’s Law: \(Q = -\frac{KA}{m} \frac{dp}{dx} \), where \(Q \) = volumetric flow rate, \(K \) = permeability, \(A \) = cross-sectional area, \(m \) = viscosity and \(\frac{dp}{dx} \) = pressure gradient
 - Assumptions:
 - Isothermal flow
 - Incompressible, constant viscosity fluid
 - Homogeneous reinforcement

- Cure Time
 - \(\frac{dc}{dt} = (k_1 + k_2 c^m) (1-c)^n \), where \(c \) = degree of conversion, \(k_1 \) and \(k_2 \) are Arrhenius constants, and \(m, n \) are empirical constants
 - Assume \(m = 0, n = 2 \),
 - \(\text{Cure Time} = \frac{(1/A)\exp(E/RT)}{c(1-c)} \), where \(A \) = pre-exponential factor, \(E \) = activation energy, \(R \) = gas constant, \(T \) = mold temperature, \(c \) = degree of conversion
RTM Fill Time Process Flow

- **Constant Flow or Pressure?**
 - Rectilinear or Radial Flow?
 - Line Source or Sink?
 - Rectilinear Calculation
 - Radial Calculation
 - Line Source Calculation

RTM Machine and Tooling Cost Equations

- Machine Cost = C1 + C2 x (Clamping Force Requirement) + C3 x (Platen Area)
 - C1, C2, C3: regression constants
 - Clamping Force = f(maximum injection pressure, mold geometry and mold design)

- Tooling Cost = C1 + C2 x (Part Weight)^C3 + C4 x (Part Surface Area)
 - C1, C2, C3, C4: regression constants, dependent on tool material
 - Tool Material Options
 - Steel
 - Aluminum
 - Epoxy
Effect of Mold Design on Fill Time and Machine Cost

<table>
<thead>
<tr>
<th></th>
<th>Fill Time (sec)</th>
<th>Mold Force (N)</th>
<th>Press Cost ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rectilinear, Constant Flow</td>
<td>12.15</td>
<td>5.4×10^6</td>
<td>$3,012,346$</td>
</tr>
<tr>
<td>Rectilinear, Constant Pressure</td>
<td>249.11</td>
<td>4.03×10^5</td>
<td>$355,782$</td>
</tr>
<tr>
<td>Radial Source, Constant Pressure</td>
<td>233.45</td>
<td>9.04×10^4</td>
<td>$176,850$</td>
</tr>
<tr>
<td>Radial Sink, Constant Pressure</td>
<td>15.54</td>
<td>1.36×10^6</td>
<td>$903,743$</td>
</tr>
</tbody>
</table>

Flow Length = 1.4m (Rectilinear), 0.7m (Radial)
Initial Injection Pressure = 5×10^5 N

RTM Cost Modeling Assumptions

- **Materials Prices:**
 - Resin (Vinyl Ester) $2.60 / kg
 - Filler (Calcium Carbonate) $0.13 / kg
 - Reinforcement:
 - Glass Fiber CSM $2.00 / kg
 - Carbon Fiber $11.00 / kg
 - Carbon / Glass Blend $6.50 / kg
 - Catalyst $3.24 / kg
 - Foam Core (Polyurethane) $2.54 / kg

- Foam Core Molding, Thermoforming and RTM Tool Material: Steel
- RTM Flow: Rectilinear, Constant Pressure
- 32 Steel Inserts
Key Carbon Fiber Design Assumptions for CIV

- Use simple beam loading equations to estimate the equivalent thickness of carbon fiber part compared to its glass fiber equivalent.
- Ratio of moduli determines the thickness of the carbon fiber part.
 - Elastic Modulus (Msi):
 - $E_{\text{glass fiber}} : 10.5$
 - $E_{\text{carbon fiber}} : 34$
 - $E_{\text{carbon/glass}} : 22.25$
- Part thickness for glass fiber component: 3 mm

Results

- Part thickness:
 - Carbon fiber: 2.03 mm
 - Carbon/Glass: 2.3 mm
- Relative Weight assuming calculated thicknesses (Glass fiber = 1.0)
 - Carbon fiber: 46%
 - Carbon/Glass: 65%

Key SMC Design Assumptions for CIV

- SMC part thickness: 4 mm
- Reinforcing rib structure placed every 150 mm
- Reinforcing rib dimensions
 - Length = 150 mm
 - Height and Width are dependent on part geometry
- Foam cores assumed in parts where crush resistance is necessary
 - Front End rails
 - Floorpan
- SMC part is composed of two halves forming a closed section

![Rib Pattern](image)
Comparison of Part Weights (including CiV inserts)

<table>
<thead>
<tr>
<th>Material</th>
<th>Bodyside</th>
<th>Cross Member</th>
<th>Roof</th>
<th>Front End</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel</td>
<td>193.6</td>
<td>367.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SMC</td>
<td>241.3</td>
<td>286.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glass Fiber</td>
<td>193.6</td>
<td>241.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon/Glass</td>
<td>172</td>
<td>241.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon Fiber</td>
<td>172</td>
<td>241.3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Weight (Kg)

Results: Total Manufacturing and Assembly Cost

Magnitude of Cost:

<table>
<thead>
<tr>
<th>Material</th>
<th>$1,000</th>
<th>$1,500</th>
<th>$2,000</th>
<th>$2,500</th>
<th>$3,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTM Glass</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTM Carb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTM Ca/Gl</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SMC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SMC-Steel Break-even Point: ~30,000 vehicles/yr

RTM Glass-Steel Break-even Point: ~35,000 vehicles/yr

(Composites Wage: $25/hr)
Manufacturing Cost Breakdown: Glass vs Carbon Fiber

<table>
<thead>
<tr>
<th>Volume (35,000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0</td>
</tr>
<tr>
<td>$500</td>
</tr>
<tr>
<td>$1,000</td>
</tr>
<tr>
<td>$1,500</td>
</tr>
<tr>
<td>$2,000</td>
</tr>
</tbody>
</table>

Other Fixed
Tooling
Equipment
Energy
Labor
Materials

Cost per Kilogram Saved (Relative to Steel Base Case)

<table>
<thead>
<tr>
<th>Annual Production Volume (x 1000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>25</td>
</tr>
<tr>
<td>30</td>
</tr>
<tr>
<td>35</td>
</tr>
<tr>
<td>40</td>
</tr>
<tr>
<td>45</td>
</tr>
<tr>
<td>50</td>
</tr>
<tr>
<td>55</td>
</tr>
<tr>
<td>60</td>
</tr>
<tr>
<td>65</td>
</tr>
<tr>
<td>70</td>
</tr>
<tr>
<td>75</td>
</tr>
<tr>
<td>80</td>
</tr>
<tr>
<td>85</td>
</tr>
<tr>
<td>90</td>
</tr>
<tr>
<td>95</td>
</tr>
<tr>
<td>100</td>
</tr>
<tr>
<td>105</td>
</tr>
<tr>
<td>110</td>
</tr>
<tr>
<td>115</td>
</tr>
<tr>
<td>120</td>
</tr>
<tr>
<td>125</td>
</tr>
<tr>
<td>130</td>
</tr>
<tr>
<td>135</td>
</tr>
<tr>
<td>140</td>
</tr>
</tbody>
</table>

RTM Glass
RTM Ca/Gl
SMC

Massachusetts Institute of Technology
Cambridge, Massachusetts
Materials Systems Laboratory
Individual Sub-Systems: Roof

- Steel: 9 parts
- RTM: 2 Parts
- SMC: 1 Part

Annual Production Volume (x 1000)

Individual Subsystems: Floorpan/Cross Member

- Steel: 57 parts
- RTM: 2 parts + 20 inserts
- SMC: 9 parts + 20 inserts

Annual Production Volume (x 1000)
Hybrid Vehicle Scenarios

Hybrid Vehicle
Bodyside: SMC (5-30% Scrap)
Floorpan/Cross Member: RTM
Front End: RTM
Roof: Steel

Hybrid Vehicle Scenarios

Hybrid Vehicle
Bodyside: SMC (5-30% Scrap)
Floorpan/Cross Member: RTM
Front End: RTM
Roof: Steel
Conclusions

- Total cost of composites BIW is competitive with steel at low production volumes (< 40,000 per year)
- Carbon Fiber
 - Use of carbon fiber significantly reduces BIW weight
 - Material price for carbon fiber is too high to justify use in BIW applications
- SMC
 - SMC design requires reinforcing ribs and box sections, which increase weight, tooling costs and assembly costs
 - SMC can be competitive with RTM BIW, given design assumptions
- Subsystems
 - Parts consolidation is a significant advantage for composites
 - Roof: low parts consolidation, no crossover with steel
 - Floorpan/Cross Member: high parts consolidation, > 50,000 crossover
 - Designs must minimize material waste
 - Bodyside: significant consolidation, high material costs => low crossover
- Hybrid vehicles can potentially become competitive with steel at high production volumes