Fundamentals of Process-Based Cost Modeling

3.56 Special Session One
Session Goal & Outline

- Goal:
 Understand the basic steps necessary to create a process-based cost model used to educate strategic technology choices

- Topics Covered
 - Define Question to be Answered
 - Identify Relevant Cost Elements
 - Relate What is Known to Cost
 - Identify What is Known
 - Establish Contributing Factors
 - Determine Required Factor Quantity
 - Determine Price of Allocation
 - Understand Uncertain Characteristics
Review of Process-Based Cost Model (PBCM)

- Objective
 - Map from Process Description to Operation Cost

- Purpose
 - Inform decisions amongst technology alternatives BEFORE operations are in place
 - et al.

Process Description
- Part Description
- Material Properties
- Economic Characteristics
- Operation Variables

PBCM

Operation Costs
Creating a PBCM: Overview

- Models are created by decomposing problem from cost backwards
 - Determine what characteristics, l_1, effect cost
 - Determine what characteristics, l_2, effect l_1 ... and so on until...
 - Determine how process description effect l_n

★ Model works from inputs to costs <-> Modeler works from costs to inputs
Cost Modeling: Nomenclature, Notation, & Necessities

- **Operation Cost**
 - Cost is generally measured as one of two rates
 - C^u per unit
 - C^t per time period
 - The denominator of the cost rate will be referred to as its **basis**

- **Cost Element**
 - Cost elements are the distinct categories of cost which together sum to the Total Operation Cost
 - e.g. *Materials Cost, Direct Labor Cost, Energy Cost*

- **Factor**
 - Any product of service, required to produce, for which money must be spent
Creating a PBCM: Critical Steps

1. Define Question to be Answered

2. Identify Relevant Cost Elements

3. Relate What is Known to Cost
 - Identify What is Known
 - Establish Contributing Factors
 - Determine Required Factor Quantity
 - Determine Price of Allocation

4. Understand Uncertain Characteristics
Creating a PBCM: Step One

1. Define Question to be Answered
 - Cost of What?
 - Cost to Whom?
 - Cost When?
 - Cost Varying How?
 - Cost Compared to What?
 ▶ *Relative to Other Options*
 ▶ *Absolute Measure of Operation*

★ More than any physical measure cost is fully dependent on context
 - Cost estimation requires exhaustive definition of context
Creating a PBCM: Step Two

2. Identify Relevant Costs
 - Pertinent to Decision
 - Necessary for Completeness / Credibility

<table>
<thead>
<tr>
<th>Common Elements of Manufacturing Cost</th>
<th>Common Relevant Cost Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
<td>Tooling</td>
</tr>
<tr>
<td>Energy</td>
<td>Overhead</td>
</tr>
<tr>
<td>Labor</td>
<td>Building</td>
</tr>
<tr>
<td>Equipment</td>
<td>Transportation</td>
</tr>
<tr>
<td>Marketing</td>
<td>Packaging</td>
</tr>
<tr>
<td>Advertising</td>
<td>Insurance</td>
</tr>
</tbody>
</table>

Exclude Unimportant Elements

Massachusetts Institute of Technology
Cambridge, Massachusetts
Creating a PBCM: Step Three - *The Real Deal*

3. Relate Costs to What is Known

- What will You Know?
 - *Engineering principles underlying process*
 - *Factor prices*
 - *Design Concept*
 - *Design Specifications***

- General Form of Relationship

\[
C^X = \sum_{i}^X c_i
\]

\[
c_i^X = \sum_{f}^X (Q_f^X \times P_f^X)
\]

- \(i = \text{Cost Element}, \quad f = \text{Factor} \)
Step Three - *Identify Factors*

3. Relate Costs to What is Known

\[c_i^x = \sum_{\text{all } f} (Q_f^x \times P_f^x) \]

A. Describe Factors which Contribute to Each Cost Element

- **Fixed:**
 - *Electricity*
 - *Laborers*

- **Variable:**
 - *Resin used*

- **Design Dependent:**
 - *Inj. Molding Press Clamping Force = f(Part Size, Number of Cavities)*

★ Whenever feasible, forecast type of factor used based on design specs
Step Three - *Understand Quantity & Price*

3. Relate Costs to What is Known

\[c_i^X = \sum_{all \ f} (Q_f^X \times P_f^X) \]

B. Relate Quantity to Process & Design
 - *Quantity of Factor f required to produce the number of parts for the basis u*

C. Relate Factor Price to Process & Design
 - *Price allocated to use a unit of Factor f for the basis u*

★ Basis u should be chosen to facilitate calculating Q and P
Variable vs. Fixed Costs

3. Relate Costs to What is Known

\[c_i^t = \sum_{all \ f} (q_f^t \times p_f^t) \]

- **Per period** element cost form two categories
 - Variable Cost
 - Those directly proportional to production volume in that period
 - Fixed Cost
 - (Obviously) Those little influenced by production volume

- This behavior influences convenient basis for cost
 - Variable
 - Calculate Per Unit
 - Fixed
 - Calculate Per Period
Modeling Specific Cost Elements

- Case Study: Polymer Injection Molding (PIM)
 - Conceptually simple process
 1. Melt polymer feedstock
 2. Inject into mold
 3. Cool
 4. Remove Part
PIM Example - Material Cost

- Variable Cost:
- Factor Required: Polymer Pellets
 - Factor Type: Design Dependent
- \(Q_f = (\text{Material in Part}) + (\text{Other material used}) \)
 - (Part Volume) x (Density)
 - (Mass of Part)
 - Scrapped Parts
 - Delivery Material
 - Finishing Scrap
 - Reusable Material
- \(P_f = \) Price of Polymer Pellets

\[c_{\text{matl}} = Q_f \times P_f \]
PIM Example - Labor Cost

- Variable Cost

- Factor Required: Polymer Industry Labor
 - Factor Type: Fixed

- $Q_f = \frac{\text{Laborers per Line}}{\text{Parts per Line}} \times (\text{Time To Make A Part} + \text{Other Time})$

 - $\# \text{Cavities in Mold}$
 - Cycle Time
 - Maintenance
 - Breaks
 - General Inefficiency

- $\text{Cycle Time} = f(\text{Material, Geometry, Technology, ...})$

- $P_f = \text{Total Labor Wage}$
Injection Molding Cycle Time

Cycle Steps

1. Open Mold
2. Advance Injector
3. Fill
4. Pack
5. Retract Injector
6. Melt next load
7. Open Mold

Cooling

Clamp

Force
Cycle Time - Engineering Parameter

- Use Combination of Engineering and Theoretical Approaches
 - Cycle Time = (Filling Time) + (Cooling Time) + (Cycle Reset)

- Cooling Time - Theoretical Determination

\[
\text{Cooling Time} = \frac{\rho \, d^2 \, c_p}{\kappa} \ln \left[\frac{8 \times (T_{\text{Melt}} - T_{\text{Mold}})}{\pi^2 \times (T_{\text{Eject}} - T_{\text{Mold}})} \right]
\]

- Filling Time - Function of Shot Size - Function of Part Weight
- Mold Cycle - Function of Press Size, But Likely Only Weakly

★ Cannot Expect Perfect Match To Theory, So Try To Correlate
Cooling Time, Part Weight and Cycle Time Correlation

\[T_{\text{cyc}} = 1.35 \times T_{\text{cool}} + 0.0151 \times \text{wgt} + 8.87 \]
PIM Example - Equipment Cost

- Fixed Cost (calculate on per time period basis)

- Factor Required: Injection Molding Machine
 - Factor Type: Design Dependent
 - Machine Type = f(Part Geometry)

- \(Q_f = \) Number of Lines Required

- \(P_f = \) Price \(\times \) Fraction Allocated to each Period

\[\text{Capital Recovery Factor} \]

★ ... However, this is not good enough!
Evolution of a Cost Model - Injection Molding

- Equipment Size \Rightarrow
 Function of Clamping Force

- Clamping Force \Rightarrow
 Function of Part Geometry and Processing Parameters

- Empirical Relation:

 \[
 \text{Clamp Force} = \text{Projected Area} \times N_{\text{cavities}} \times \frac{224}{\sqrt{\text{Wall Thick.}}} + 172
 \]

★ Clamp Force Can Then Be Related To Press Cost
Correlation Between Press Cost and Tonnage

Cost = 368.82 \times \text{tonnage} + 14831

Machine Cost (thousand $)

Press Tonnage
Processing Time and Its Relationship with Capital Costs

- Number of Machines/Production Lines

\[
\text{Number of lines} = \frac{\text{Cycle Time} \times \text{Annual Production Volume}}{\text{Available Production Time} \times \text{# of Cavities}}
\]

(If dedicated, rounded up to the next integer value)

- Critical Accounting Issue -- Dedication
 - Will lines be fully dedicated to producing only this product?
 - Only impacts lines not fully utilized
Cost Modeling Important Concepts

- Break down problem as much as possible
- Relevant cost elements vary with question and context
- Clearly identify cost elements considered
- Calculate element cost with convenient basis
 - Variable \iff Per Unit
 - Fixed \iff Per Period
- Be careful of spurious precision
Amortization of Capital Costs

- Capital Costs Must Be Annualized / Amortized to Account for Financing Costs or Opportunity Costs

- Simple Annuity Calculation:

 \[
 \text{Annual Cost} = \text{Total Capital Cost} \times \frac{r^n \times (1+r)^n}{(1+r)^n - 1}
 \]

- Note: The period of the annuity/payback is determined by either
 - the accounting lifetime of the capital good (machines, buildings, etc.),
 - the lifetime of the product being produced (tooling) or
 - the physical lifetime of the capital good, whichever is shorter.
Capital Cost Relationships

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Estimated Parameters</th>
<th>Cost Estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part Geometry</td>
<td>Cost of Tools</td>
<td>Material</td>
</tr>
<tr>
<td>Part Material</td>
<td></td>
<td>Energy</td>
</tr>
<tr>
<td>Production Parameters</td>
<td>Clamping Force</td>
<td>Labor</td>
</tr>
<tr>
<td>Exogenous Parameters</td>
<td></td>
<td>Equipment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tooling</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Maintenance</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Overhead Labor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Building</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Capital</td>
</tr>
</tbody>
</table>